
An Early Respiratory Distress Detection Method with Markov Models

Hariharan Ravishankar1, Aditya Saha1, Gokul Swamy2 and Sahika Genc3

Abstract— A method for early detection of respiratory dis-
tress in hospitalized patients which is based on a multi-
parametric analysis of respiration rate (RR) and pulse oximetry
(SpO2) data trends to ascertain patterns of patient instability
pertaining to respiratory distress is described. Current practices
of triggering caregiver alerts are based on simple numeric
threshold breaches of SpO2. The pathophysiological patterns of
respiratory distress leading to in-hospital deaths are much more
complex to be detected by numeric thresholds. Our pattern
detection algorithm is based on a Markov model framework
based on multi-parameter pathophysiological patterns of respi-
ratory distress, and triggers in a timely manner and prior to the
violation of SpO2 85-90% threshold, providing additional lead
time to attempt to reverse the deteriorating state of the patient.
We present the performance of the algorithm on MIMIC II
dataset resulting in true positive rate of 92% and false positive
rate of 6%.

I. INTRODUCTION

National Registry of Cardiopulmonary Resuscitation (NR-
CPR), an American Heart Association (AHA)-sponsored,
prospective, multisite, observational study of in-hospital re-
suscitation, between January 1, 2000, and June 30, 2002,
14720 cardiac arrests occurred [1]. By mid-2010, 183,749
cardiopulmonary resuscitation events were in the registry
[2]. The three most common reasons for cardiac arrest in
adults were (1) cardiac arrhythmia, (2) acute respiratory
insufficiency, and (3) hypotension. Despite the fact that a
primary arrhythmia was one of the precipitating events in
nearly one half of adult cardiac arrests, ventricular fibrillation
(VF) was the initial pulseless rhythm in only 16% of in-
hospital cardiac arrest victims [1].

An abnormal respiratory rate has been shown to be an
important predictor of serious events such as cardiac arrest
and admission to an intensive care unit (ICU) [3], [4]. How-
ever, its ubiquitous use in a hospital environment still remains
a challenge mainly because of poor measurement accuracy.
On the other hand, pulse oximetry (SpO2) measurements
are ubiquitous despite its limited use as an early warning
indicator as a decline in SpO2 below key physiological levels
most often indicates severe patient distress. In this work,
we develop an algorithm for early detection of respiratory
distress through simultaneous analysis of RR and SpO2.
Increased monitoring can reduce adverse events, improve
outcomes, reduce length of stay, and minimize legal liability.
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The premise for our work comes from a seminal paper
by Lynn and Curry [4] where the authors highlighted the
shortcomings of the existing respiratory alarm monitoring
practices. The authors argue that the traditional threshold
breach method of detecting instability was not scientifically
derived/proven and such a method is incapable of detecting
instability early enough leading to a number of unexplained
hospital deaths (UHD). The authors postulate that pathophys-
iological events leading to these UHDs are complex, multi-
parametric and often progress along three distinct patterns
designated as Type I, Type II and Type III. Type I pattern
of unexpected hospital death (UHD) reflecting a clinically
evolving process associated with microcirculatory failure
induced by such common conditions as congestive heart
failure (CHF), sepsis, and pulmonary embolism is shown in
Fig. 1.

Fig. 1. Type I pattern of unexpected hospital death (UHD) reflecting a
clinically evolving process associated with microcirculatory failure induced
by such common conditions as CHF, sepsis, and pulmonary embolism to
name a few.

In this paper, we propose a multi-parametric, real-time
analysis framework for detecting patterns of respiratory
distress described in [4]. We restrict our analysis to RR
and SpO2 only because RR and SpO2 are two noninvasive
measurements that can be acquired in various care areas
including but not limited to ICUs and General Care Floor
(GCF). We develop models that assess the changes in RR
and SpO2 values over time and detect if any of the three
patterns of UHD are present. We define temporal abstractions
from raw RR and SpO2 measurements, identify useful multi-
parametric events using them and finally detect temporal
patterns of interest using a Markov model based framework.
We have conducted experiments on detecting Type I patterns
from a set of records from MIMIC II database [5] of patients
who suffered from respiratory complications and suffered
mortality.
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II. TECHNICAL APPROACH

We approach the problem of respiratory distress detection
as a multi-parametric temporal pattern recognition problem
as shown in Fig. 2. We start with the one-minute-summary
RR and SpO2 values and define various levels of temporal
abstractions (TA) before the Markov model based Finite
State machine (FSM) is called into action. These TAs in-turn
morph the problem to an event-sequence detection problem
which can be readily solved by the Markov-model based
framework.

A. Trending

Detection of clinically actionable decisions from noisy,
turbulent data is challenging. It is necessary to pre-process
the one-minute summary values to achieve consistent, re-
liable and relevant alarms. Towards that goal, our pre-
processing step includes de-noising, outlier rejection, and
trending. To achieve outlier rejection, we use the classical
Chauvenet’s criterion [6]. Since the dynamic range and the
fluctuations in values are different for RR and SpO2, we use
different statistical parameters in the Chauvenet’s criterion
for RR and SpO2 time-series measurements.

Trend analysis in time-series data has attained consider-
able attention from the research community over the years.
Simpler techniques include parametric regression where an
appropriate curve fitting function of suitable order is com-
puted in a least-squares framework. One drawback of such
an approach is that it is almost impossible to model the
entire time-series by a single function which would lead to
large amounts of representation error. We use the locally
weighted scatter plot smoothing (LOWESS) technique and
its generalization LOESS [7] to achieve robust long-term
and short-term trends. LOWESS method combines multiple
regression models in a k-nearest neighbor-based beta model.
One of the major advantages of this method is that it does
not require the specification of global fitting function but
only the smoothing parameter and the degree of the local
polynomial.

B. Segment Classification and Event Detection

In this section, we describe two important temporal ab-
stractions that enable us in detecting a multi-parametric
temporal pattern of interest: 1) Segment Labels - stream level
abstraction, describing the variation in RR and SpO2 inde-
pendently, and 2) events - models the temporal relationships
between multiple streams by assimilating the stream level
labels.

Segmenting time series data into segments of similar
characteristics is a well-studied problem in temporal data
mining [8]. Methodologies towards efficient representation
of temporal data has become an effective and a necessary
step in many a task ranging from compression, clustering,
classification and rule-mining of time series data. Some of
the high-level representations include symbolic mappings,
SAX and transform-based while the most frequently used
technique has been piecewise linear representation (PLR) [9],

[10], [11]. Intuitively PLR refers to approximating a time-
series data of length n into K linear segments leading to an
efficient representation for storage, transmission and more
importantly for computational mining tasks. The authors of
[8] discuss variants of PLR approach including an online
variant which makes the representation readily suitable to
real-time data.

An alternate representation paradigm involves transform-
ing time-series data into an interval based representation. The
streams are divided into frames and features and/or labels
are extracted from these intervals of constant length. While
the techniques described earlier are ‘content based’ and
represent similar portions using a single label, the interval-
based representation produces a label for every frame and
similar portions might span over multiple segments. The
frame-based representation has been extensively employed
in classic temporal pattern recognition problems like speech
recognition [12], handwriting recognition, etc. The biggest
advantage from such a representation is that it results in a
series of feature-vectors with specific time-stamps which can
then be handled by Hidden Markov models [12] or dynamic
time warping techniques [13] to perform the matching or
detection tasks. There have been works in the medical
domain too that use this interval-based representation [14].

In our current implementation, we use frame-based rep-
resentation.A PLR technique would represent the RR and
SpO2 trends by an independent set of linear approxima-
tions which would have varying start/end time and length
depending on the changes on the individual streams. To
ascertain an event of clinical significance (e.g., simultaneous
increase in RR and decrease in SpO2), we have to take into
account the labels as well as the varying time-stamps of
these segments which can be tricky. Second, the parameters
of the PLR such as the length and number of segments,
have to be managed intelligently to exploit the full potential
of the “content based” representation. Finally, a frame-
based representation can be easily integrated into a Markov
model based framework. Additional constraints on the time
properties of the pattern can be incorporated into the learning
framework using this frame length as a quantum of time unit.

C. Markov models - Finite state machines

The problem of respiratory distress detection can now be
considered as an event-sequence detection problem. We have
a string of events coming from time frames, and the task
is to raise an alarm if a sequence of events corresponding
to Type I pattern is present. There are multiple techniques
that have been explored for sequence detection in time-series
mining and also in areas including communications, speech
recognition amongst many others. Some of the techniques
include regular expression based [?], Finite State machines
based (FSM) , Hidden Markov Models (HMM) [12], etc.
These techniques differ in complexity as well as the statisti-
cal flexibility in modeling they can offer.

Markov models have been extremely popular in medi-
cal decision making [15]. As medical decisions are often
sequential and uncertain, these models are an appropriate
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Fig. 2. Markov Model based framework for respiratory distress detection.

technique in solving for stochastic and dynamic changes.
Markov models assume that the patient is always in one of a
finite number of discrete health states. The events observed
over time prompt the transition from one state to another
and finally an important clinical condition can be inferred
once the terminal state of this Markov chain is reached.
In addition, the flexibility of modeling repetitive events by
simply resetting the state machine to an initial state make
them ideal in solving problems in health care like alarm
detection.

III. RESULTS ON MIMIC II

As mentioned before, we have used records from the
Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC) II database to test 1) the hypothesis that the patterns
highlighted in [4] are indeed observed in patients with
respiratory distress, and test 2) the sensitivity and specificity
of the respiratory pattern detection algorithm on two patient
groups, one group composed of patients with respiratory
distress and the other group with no sign of respiratory
distress.

MIMIC II database is a publicly and freely available
database containing records of a diverse and very large
population of ICU patients. There are essentially two basic
types of data in the MIMIC II database; patients’ clinical data
and bedside monitor waveforms along with associated de-
rived parameters (numerics). The clinical database contains
patients’ laboratory results, admission and death records,
discharge summaries, ICD-9 codes, and nurse-verified down-
sampled trends. The waveform database contains signals
recorded by the bedside monitors such as electrocardiograms
(ECG) and arterial blood pressure (ABP) waveforms. The
derived parameters from these waveforms such as heart rate
and systolic blood pressure are contained in the numerics
database. In our study, we utilize ICD9 codes in the clinical
database and one-minute summary values in the numerics
database.

In order to form the one patient group with respiratory
distress and one control group with no respiratory distress,
we first utilized the ICD9 codes and then manually anno-
tated the matching numerical records for types of patterns

described in [4]. We now describe the process of forming
these two groups in detail. The MIMIC II clinical database
as of 2013 contained 26654 and matching numerical database
contained 2431 records. We downloaded 1117 records (46%)
randomly out of 2431 for preliminary analysis. 1096 out of
1117 contained non-empty ICD9 files. There are six groups
of ICD9 codes associated with respiratory condition only.
696 out of 1096 patients have one or more of these groups
of respiratory conditions. 404 out of 696 (or 35% of 1096
patients we started with) contained ICD9 code associated
with acute respiratory failure.

404 clinical records resulted in 807 numerical records
because one patient may have multiple recordings because
they were readmitted and their identification numbers were
matched accordingly. 234 out 807 records were down-
selected for further analysis because they contained long
enough measurements of RR and SpO2 needed per dis-
cussion in [4]. After manual inspection of 234 records, we
noted that the Type I pattern shown in Fig. 1 was the most
common pattern. 186 and 11 out of 234 time-series numerical
records contained Type I and III patterns, respectively. 37
records were eliminated from the initial analysis due to very
noisy respiration rate measurements or lack of variation in
respiratory rate, potentially due to mechanical ventilation.

696 clinical records with no respiratory distress resulted
in 904 numerical records. In order to form balanced patient
groups, we randomly picked 157 records with long enough
measurements of RR and SpO2. After manual inspection of
all the records, we observed that 31 records out of 157 had
other respiratory ICD9 codes and contained Type I patterns.
We eliminated 32 records due to noisy respiration data. 94
our of 157 records contained no Type I patterns. 48 out of
94 records contained no respiratory condition which we used
for our preliminary analysis. Later, we tested our algorithm
on the entire 157 records as well.

For our preliminary analysis, we wished to have bal-
anced patient groups. Thus, we randomly selected 50 patient
records out of 186 to match 48 patient records remaining
which contained no respiratory related ICD9 codes. The
results of the performance testing on the preliminary data
of two groups are shown in Table I. Using our current
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implementation, we have achieved a True Positive Rate
(TPR) of 92% and False Positive Rate (FPR) of 6%. Later,
we extended the performance testing to the entire 157 records
with no acute respiratory distress but may contain other
respiratory conditions in one ore more of the six ICD9
respiratory disease groups which resulted in TPR of 88%
and FPR of 12%.

TABLE I
THE PERFORMANCE OF THE MULTI-PARAMETER RESPIRATORY PATTERN

DETECTION ALGORITHM.

Actual versus predicted Positive - Actual Negative - Actual
Positive 46 3
Negative 4 45

Total 50 48

The alarms produced by our algorithm provide significant
lead times ranging from hours to days as shown in Fig. 3. The
highlighted that in majority of these records (around 80%),
threshold breaches were not met (resulting in longer lead
times depending on the length of the recording) or were met
relatively late, leaving very little time to save the patient from
dying. In other words, existing systems would not alarm in
these cases whereas our algorithm is able to detect respiratory
instability.

Fig. 3. The alarms produced by our algorithm provide significant lead times
ranging from hours to days compared to current threshold logic based on
SpO2 measurements.

In order to understand the contribution of RR and SpO2
trends resulting in respiratory distress pattern, we counted
the number of times the Markov state model transitioned
with one or more of the parameters. The results are shown
in Table II in percentages. According to this table, RR plays
a significant role in the onset of pattern while SpO2 plays a
significant role leading to alarm.

TABLE II
THE SIGNIFICANCE OF RR AND SPO2 MEASUREMENTS IN TRIGGERING

MARKOV STATE CHANGES LEADING TO TYPE I PATTERN DETECTION.

State Transitions Both RR only SpO2 only
From Start to Onset 57% 43%

From Onset to Alarm 55% 25% 20%
From Reaction to Alarm 30% 15% 55%

IV. CONCLUSIONS

The need for relevant, robust and dependable alarm sys-
tems in patient care has been identified as one of the
key challenges to be addressed in our current healthcare
climate. Alarm fatigue and subsequent patient mortality due
to the existing threshold-based alarm systems have been well-
documented in the recent past. In this paper, we proposed
algorithms towards smarter alarm systems pertaining to res-
piratory distress. We perform a multi-parametric analysis of
patients’ physiological parameters over time and ascertain
the potential to develop respiratory distress. It has been
highlighted in [4] that respiratory distress patterns evolve
as a condition over time and current alarm systems are not
equipped to deal with them. We have proposed a framework
to analyse these patterns and have achieved promising results
on 100 records from MIMIC II database for detecting Type I
patterns. Our future research includes efforts on optimizing
the system parameters for sufficient lead times and alarm
detection rate using inputs from clinical experts. We plan to
expand this framework to detect other patterns of interest
and also extend this effort to other clinical conditions.
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