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Abstract—The hypothalamic-pituitary-adrenal (HPA) axis is
critical in maintaining homeostasis under physical and psycho-
logical stress by modulating cortisol levels in the body. Dysreg-
ulation of cortisol levels is linked to numerous stress-related
disorders. In this paper, an automated treatment methodology
is proposed, employing a variant of nonlinear model predictive
control (NMPC), called explicit MPC (EMPC). The controller is
informed by an unknown input observer (UIO), which estimates
various hormonal levels in the HPA axis system in conjunction
with the magnitude of the stress applied on the body, based
on measured concentrations of adreno-corticotropic hormones
(ACTH). The proposed closed-loop control strategy is tested on
multiple in silico patients and the effectiveness of the controller
performance is demonstrated.

I. INTRODUCTION

The hypothalamic-pituitary-adrenal (HPA) axis is a self-

regulating neuro-endocrine system that maintains homeosta-

sis in response to physiological or psychological stress [1].

Malfunctions in cortisol regulation by the HPA-axis results

in hypocortisolic conditions. This has been linked to severe

stress-related disorders such as chronic fatigue syndrome [2]

and post-traumatic stress disorder [3]. The HPA-axis operates

as shown in Figure 1. The system is described in more detail

in [4], [5]. A common approach to analyze a physiological
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Fig. 1. Dynamics of the HPA Axis system. The red lines indicate neg-
ative feedback/inhibitory signals. CRH=Corticotropic Releasing Hormone,
ACTH=Adreno-corticotropic Hormone.

system is to construct a mathematical model of the system

dynamics. A model of the HPA-axis dynamics based on

clinical patient data is proposed in [4]. This model contains

two stable steady states/equilibrium points upon removal of
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stress. One steady-state corresponds to a healthy equilibrium.

The other is a hypocortisolic equilibrium state, responsible for

HPA axis-related disorders. The objective of this paper is to

design a control strategy to drive the patient HPA-axis system

to the healthy equilibrium.

Recently, numerous control strategies have been proposed to

automate drug dosage for therapeutic applications. A neural-

network MPC approach was proposed in [6] with reinforce-

ment learning to provide optimal drug dosage values in renal

anemia management. Furthermore, the authors in [7] provide

clinical data to support the robustness and performance of

the model predictive control paradigm in basal insulin control

in a clinical setting. A previous study of the application of

model predictive control on the HPA axis system is reported

in [5] with steady-state analysis to derive control actions which

correct HPA-axis dysfunction.

The key contributions of this paper are twofold. First, we

employ an explicit model predictive controller (EMPC) to

achieve our control objective. It is well-known that nonlinear

model predictive control (NMPC) is widely used in the control

of constrained nonlinear systems [8]. However, one of its

drawbacks is the computational burden involved in computing

optimal control actions iteratively. The EMPC addresses this

issue by transforming the iterative optimization problem into

a form that can be solved offline to create an explicit map of

control actions as a function of the patient’s current state. An

additional advantage is that the constructed EMPC map can

be inspected by medical professionals over numerous patient

states and the safety of derived control actions can be judged

before implementation. Second, we introduce an unknown

input observer (UIO) to estimate the patient state and stress

inputs. We consider circulatory ACTH to be the only state that

can be measured as in [5], and all other concentrations of the

hormones as well as the stress is estimated by the UIO.

II. HPA MODEL

The HPA-axis model dynamics that we use in the paper was

proposed in [4], [5] and is reported to corroborate with clinical

data. It has the form,
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We represent this model compactly as,

ẋ = f(x) +B1(x)d+B2u. (1)

The state variables x1, . . . , x4 correspond to normalized con-

centrations of CRH, ACTH, free glucocorticoid receptors (GR)

and cortisol, respectively. The external stress input to the

system is denoted by d, and the control action u represents

the rate of addition or removal of cortisol from the peripheral

blood by means of cortisol analogues. The model parameters

ki1, kcd, . . . , krd are fixed at their nominal values as reported

in [5]. A bifurcation diagram of the cortisol concentration with

varying stress is shown in Figure 2. The intrinsic bistability of

the system under absence of stress is illustrated, and the two

equilibria are labeled.
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Fig. 2. Bifurcation diagram of normalized cortisol (x4) with varying stress
(d). The vertical red line indicates the absence of stress, that is, d = 0.
The equilibrium corresponding to the lower steady-state cortisol value is the
hypocortisolic state we wish to avoid. The healthy equilibrium to which the
patient must be driven is also shown above.

III. CONSTRUCTING THE CONTROLLER TO ACHIEVE

HEALTHY EQUILIBRIUM

The NMPC is an iterative methodology that involves the

use of a mathematical model to predict the future states of a

system based on the states at the current time. To alleviate the

excessive computational burden of the NMPC, we construct

an offline version called explicit model predictive control

(EMPC).

We construct an EMPC on an admissible range of patient

states, denoted X and a range of magnitudes of stress, D. The

EMPC in our construction is an interpolated nonlinear map

which returns a control action given the patient’s current state

x and stress d, that is, u : X × D → U . The construction

of the interpolant u(x, d) can be divided into two steps:

(1) the construction of a terminal region which guarantees

asymptotic stability to the healthy equilibrium denoted x∗

h,

and (2) approximation of the controller surface using sparse-

grid interpolation.

A. Finding the terminal region of guaranteed stability

To construct the EMPC, a terminal region T ⊂ X is

identified to which the patient’s state can be driven such that

the patient will attain the healthy equilibrium x∗

h upon removal

of stress (d = 0). Such a region T is a domain of attraction

of x∗

h. Let ∆x = x− x∗

h. In this paper, we consider T to be

an ellipsoidal terminal region of the form:

T = {x : ∆x⊤P∆x ≤ ε}, (2)

where P is a positive definite, real symmetric matrix that

solves the continuous Lyapunov equation and ε > 0 is a scalar.

We use the method described in [9] to compute T .

B. Approximating the EMPC using sparse-grid interpolation

Upon computing a terminal region, we then calculate an

NMPC control action which drives the patient states to T .

The control action is a function of the initial condition x0, and

is derived by solving a quasi-infinite horizon optimal control

problem,

u(x0, d) = argmin
u

∆x(Tf )
⊤P∆x(Tf )+

∫ Tf

0

∆x⊤Q∆x+Ru2 d τ,

subject to (1), x(0) = x0, x(Tf) ∈ T

u(t) ∈ U ,x(t) ∈ X ∀ t ∈ [0, Tf ],

(3)

where Q,R are positive definite, symmetric weighting matri-

ces, x0 is an initial state of the patient, Tf is the specified

prediction horizon within which time the state will enter the

terminal region T . As in conventional NMPC, only a small

initial part of the control trajectory of u(x0) is stored to

construct the interpolated EMPC surface.

In order to construct an EMPC employing this NMPC

formulation, we employ a sparse-grid framework as discussed

in our previous work [10]. The sparse-grid architecture is

chosen due to its tractability in construction of higher di-

mensional interpolants with high computational efficiency and

reduced memory usage [11], [12]. We select N points (called

samples/nodes) on X × D. At the ith sample,
[

xi, di
]

, we

solve (3) with xi as the initial condition of the system, that

is, x(0) = xi under a constant stress di.

This process is continued for i = 1, 2, ..., N . A sparse-grid

interpolation algorithm is employed in order to approximate

the EMPC control surface u(x, d) over X×D with information

at the N nodes. Note that for the EMPC construction stage, we

assume full knowledge of the states and stressor input values.

In practice, however, such an implementation is unrealistic as

only a subset of the states can be measured in real-time. This

fact motivates the construction of the unknown input observer

(UIO).

IV. PATIENT STATE AND STRESS ESTIMATION USING AN

OBSERVER

An observer is a deterministic dynamical system which can

generate estimates of the patient’s condition (states) given

available measurements (outputs) and drug dosage history

(control inputs). We represent the available measurements as

y = x2 = Cx, where C =
[

0 1 0 0
]

as we only

measure x2, the circulatory ACTH concentration. We denote

the measurement error as ey = y − ŷ, where hatted variables

3427
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Fig. 3. (Upper) Controller performance for the nominal patient. The black dashed-line denotes the healthy equilibrium x
∗

h
whereas the pink dashed-line

is the hypocortisolic steady-state that we wish to avoid. All concentrations of CRH, ACTH, free GR, and Cortisol, as well as the magnitudes of stress and
control input are normalized. (Lower) Controller performance for ten model-mismatched patients and stress-estimation for one model-mismatched patient.

are the patient states estimated by the observer and non-hatted

variables are actual patient states. Note that the input u is also

known as it is computed from the EMPC interpolant. We use

the observer proposed in [13],

˙̂x = f(x̂) +B1u+B2(x̂)L(ey), (4)

where L(ey) = Key is a linear injection term with gain K

and x̂ is the vector of state estimates. The system (4) is an

observer of the system (1) if limt→∞ x(t)− x̂(t) = 0 for a set

of initial conditions x(0) and x̂(0). Let the estimation error be

denoted as e , x− x̂. The objective is to design an observer

such that,

lim
t→∞

e(t) = 0. (5)

The dynamics of the estimation error system are given by,

ė = f (x)− f (x̂) +B2(x)d−B2(x̂)L(ey),

= f (e+ x)− f(x̂) +B2(e+ x̂)d−B2(x̂)L(ey). (6)

The construction of the observer thereby reduces to choosing

the injection term to ensure that the system (6) is asymptoti-

cally stable at the origin, that is, (5) is satisfied. The estimated

stress d̂ is obtained by low-pass filtering the signal L(ey). A

detailed analysis of the performance and implementation of

the above UIO can be found in [13], [14].

V. In-silico TRIALS

In this section, we demonstrate the performance of the

closed-loop EMPC control strategy on correction of HPA-axis

dysfunction. We present our results into two parts. First, we

apply the controller to the nominal patient and then test its

performance under patient-model mismatch.

A. Nominal Patient

For the nominal in-silico patient, we assume there is no

model-patient mismatch, that is, the patient dynamics are

perfectly described by the model. The EMPC is constructed

with a predictive horizon Tf = 240 min, and the terminal
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region derived is described by (2), where

P =









1.02 0.16 4.52 1.35
0.16 0.31 3.04 2.56
4.52 3.04 51.63 29.41
1.35 2.56 29.41 24.88









, ε = 0.56.

The weighting matrices are taken to be Q = 10I4 and

R = 0.1, respectively. The admissible state-space is X :=
{x : ‖x‖∞ ≤ 1}. Furthermore, D := {d : |d| ≤ 0.25} is the

range of stressor magnitudes, and U := {u : |u| ≤ 0.8} is the

admissible control input space. The optimization problem (3)

was solved in MATLAB 2013b, using fmincon and the

sparse-grid sampling and interpolation were performed with

the sparse-grid interpolation toolbox [15]. A linear injection

term is used for the UIO with L(ey) = 900ey. A low-

pass Butterworth filter is used to estimate the stress signal

with cut-off frequency Fc = 4Hz, and sampling frequency

Fs = 200Hz. MATLAB’s filtfilt command is used for

implementing this filter on the stress signal.

A random time-varying stress signal d is simulated as

follows d = µ1s(t−t1)−µ1s(t−t2)+µ2s(t−t3)−µ2s(t−t4),
where µ1,2 are random numbers generated within the inter-

val [−0.25, 0.25], and t1,3 are random integers denoting the

activation times of the stress signal, t2,4 denote deactivation

times and s(t) is the unit-step signal. The total time an in-silico

patient is simulated is 60 hours and the rate of cortisol delivery

is allowed to change every 15 minutes. The performance of

the control strategy is shown in Figure 3. The results obtained

here corroborate those in [5], as demonstrated by the negative

control values. This implies that the derived treatment strategy

is indeed a reduction of the rate of production of corti-

sol, which seems counter-intuitive to avoiding hypocortisolic

steady-states. The UIO proves effective in estimating the states

and the stress inputs without large errors throughout simulation

time. Also the error between the actual states and the estimated

states converge asympotically, as guaranteed in [13]. We notice

that the patient enters the terminal region T after ≈ 28 hours

of treatment, from where the patient state converges to the

healthy equilibrium x∗

h with u = d = 0. Encouraged by the

results obtained using the nominal patient model, we next test

the control strategy in the presence of parameter mismatch

between the patient and the model.

B. Model-Mismatched Patient

We allow the parameters ki1, the CRH inhibitor constant,

and kcr, the GR synthesis constant, to vary ±10% about

their nominal values under a uniformly distributed random

variable for 10 in-silico patients. This emulates the condition

when the patient dynamics are not perfectly captured by the

model. Other design parameters are maintained constant and

the nominal controller designed in Section V-A is applied

to ten in-silico patients for a simulation time of 40 hours.

The simulation results are shown in Figure 3. We observe

that for all the patients, the healthy equilibrium is attained

in spite of model mismatch. The model uncertainty causes

a degradation in the stress estimation quality, but due to

the inherent robustness of the EMPC the controller performs

satisfactorily.

VI. CONCLUSIONS

In this paper, we propose an observer-based EMPC con-

troller to correct HPA axis dysfunction. The controller de-

signed on the nominal system (with no uncertainties) is tested

on ten simulated patients, demonstrating the effectiveness of

the proposed control scheme. Some limitations, however, re-

main to be addressed. First, we rely on the inherent robustness

of the EMPC strategy in the parameter uncertain case without

explicitly taking into account the magnitude of parametric

uncertainty. Second, we assume the measurement of ACTH

possible in real-time, which may be prohibitive in practice.
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