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Abstract— Due to the increasing elderly population and the
extensive number of comorbidities that affect them, studies
are required to determine future increments in admission to
emergency departments. Some of these studies could focus on
the relation between chronic diseases and breathing pattern
in elderly patients. Variations in the fractal properties of
respiratory signals can be associated with several diseases.
To determine the relationship between these variations and
breathing patterns, and to quantify the fractal properties of
respiratory flow signals, we estimated the Hurst exponent
(H). Detrended fluctuation analysis (DFA) and discrete wavelet
transform-based estimation (DWTE) methods were applied.
The estimation methods were analyzed using simulated data
series generated by fractional Gaussian noise. 43 elderly patients
(19 patients with a non-periodic breathing pattern - nPB, and 24
patients with a periodic breathing pattern - PB) were studied.
The results were evaluated according to the length of data
and the number of averaged data series used to obtain a good
estimation. The DWTE method estimated the respiratory flow
signals better than the DFA method, and obtained Hurst values
clustered by group. We found significant differences in the
H exponent (p = 0.002) between PB and nPB patients, which
showed different behavior in the fractal properties.

I. INTRODUCTION
The aging of the developed world population affects

future planning in emergency departments, and increases
interest in chronic disease studies. According to the study
of United Nations [1], at present, people over 69 years old
represent 22% of the total population, and is estimated an
increasing to 35% by 2100. The most common diseases in
the elderly are of a cardiac or respiratory nature, although an
extensive number of comorbidities can affect the prognosis
and diagnosis of this population.

Elderly breathing patterns can differ with health and age,
and abnormalities may develop, such as periodic modulations
that could be interspersed with apnea. This modulation is
referred to as a Periodic Breathing pattern. In our previous
studies [2], [3], we classified patients into three groups ac-
cording to the presence of this modulation. Patients without
modulation were classified as the non-Periodic Breathing
group (nPB), and those with modulation were classified
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as the Periodic Breathing group (PB). In the PB group,
patients with apneas between modulations were classified as
the Cheyne-Stokes Respiration group (CSR). PB patterns are
related with aging, heart failure and respiratory diseases [4].

Biomedical systems exhibit complexity and nonlinear
structures in measured signals. A fractal analysis allows us
to evaluate the complexity, self-similarity and characteristic
length of the signals. Several studies present the relation
between alterations in physiological parameters and changes
in the fractal properties of their systems, which could be
associated with the clinical diagnosis and/or treatment of
diseases [5], [6], [7], [8]. The study of fractal variability in
cardiorespiratory diseases has become a method of growing
interest to describe and characterize its dynamic patterns.

The Hurst exponent (H), which is used to quantify the
fractal properties of a system, is a measure of long-term
memory in time series. In the literature, there are numerous
comparative analysis of the H exponent using simulated
data, and the exponent is estimated by different methods
to evaluate the error. Fano factor and Aggregate variance
methods are widely used to measure the fractal properties
of signal [9], [10], [11]. However, estimators like detrended
fluctuation analysis (DFA) and discrete wavelet transform-
based estimation (DWTE) method have proved more efficient
and allow better long-range dependence (LRD) detection and
quantification [12].

Some studies of the immature newborn respiratory system
describe the presence of apneas and modulations in breathing
pattern. Similar alterations can occur in the elderly breathing
pattern. The inter-breath interval (IBI) signal extracted from
the respiratory flow signal is analyzed as a function of the
long-rate dependence [8], [13].

In this study, we analyzed the respiratory flow signal of
elderly patients admitted to the short-stay unit. We aimed
to characterize the IBI signal through the H exponent,
by applying DFA and DWTE estimators, in order to find
differences in the fractal behavior between PB and nPB
patterns. This performance can involve physiological changes
in dynamics breathing regulations, related with age and/or
several diseases [14].

II. DATASETS
A. Registered signals

Respiratory flow signals were recorded from 45 elderly
patients (aged 82±6 years) admitted without specific diseases
to the short-stay unit, at the Hospital de la Santa Creu i
Sant Pau in Barcelona, Spain. All subjects were included
in the study according to a protocol approved by the local
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ethics committee (Ref. IIBSP-VEN-2012-168). The protocol
for respiratory flow signal acquisition is described in [2], [3].

The patients were classified into two groups according
to the presence of periodic modulation in the respiratory
flow signal, which was validated by clinicians: 19 patients
had a non-periodic breathing pattern (nPB) and 24 patients
had a periodic breathing pattern (PB). Additionally, the
patients in the nPB group were classified as a function of
the respiratory rate into the following groups: nPB slow
(nPB slow < 20resp/min) with 12 patients, and nPB fast
(nPB f ast > 20resp/min) with 7 patients. Within the PB
group, 11 patients were classified as CSR and 13 patients as
without apnea. The remaining 2 patients were excluded from
the study due to problems with the records.

B. Simulated data

Simulated data was obtained to evaluate the response of
H exponent estimators with different time-series lengths,
generated by the fractional Gaussian noise (fGn) model.
The circulant matrix embedding method [15] was used to
generate simulated IBI signals with different defined H
values. The adjusted fourier transform method [16] was used
to reproduce the real IBI signals and preserve the statistical
properties (surrogate data series).

An fGn can be seen as a Gaussian process, with the
stationary increment of self-similar stochastic processes by
Hurst parameters. Consequently, fGn is a zero-mean sta-
tionary process characterized by two parameters: the Hurst
exponent H ∈ (0,1) and its variance σ2.

An incremental process X = {Xk, k ∈ Z} of fractional
Brownian motions can be defined as fractional Gaussian
noise if it satisfies

Xk = BH(k+1)−BH(k), (1)

and its autocorrelation function is given by

ρ(k) =
1
2

[
|k+1|2H −2 |k|2H + |k+1|2H

]
(2)

ρ(k)k→∞ = H (2H−1)k2H−2. (3)

As can be seen from (3), the Hurst exponent is a measure
of the long-term correlation between the discrete time series.
The LRD behavior is observable in the Xk process, due to the
slow decay in the correlation for 1/2 < H < 1, and means
that the process is positively correlated or has a long memory.
When H = 1/2, the process is uncorrelated and is defined as
white noise. Finally, for 0 <H < 1/2 means that the process
is negatively correlated and has short-range dependence.

The fGn data show similar behavior to the LRD with the
real IBI signals and H controlled values. Surrogate series
allow reproduction of the IBI signals, and preserve certain
statistical and fractal properties. These series are useful to
reduce the dispersion error in the H estimation in real IBI
signals, and to compare the effectiveness of the applied
methods.

III. METHODOLOGY

A. Inter-breath interval signal extraction
Inter-breath interval signals (IBI) are obtained from the

time period for each breath cycle duration. The respiratory
flow signal represents the cyclical activity that consists of
inspirations and expirations repeated over time. Everyone of
these cycles is measured by inspiratory time (TI), expiratory
time (TE ), and breath duration (TTot), as the sum of TI+TE .

The time series of the breath durations were extracted au-
tomatically using an algorithm based on the inflection points
and the zero-crossing of the respiratory flow signal power.
Thereafter, they were visually inspected and, if necessary,
edited.

The IBI signal is a discrete sequence of the TTot intervals.
In order to determine possible apnea episodes, an adaptive
threshold corresponding to three breath duration intervals
(TTot ≥ 3) was defined. These episodes are characteristic of
the CSR pattern. Fig. 1 illustrates the performance of the
aforementioned in an example of the respiratory flow signal
acquired from a CSR patient. This figure shows the results of
the time series marks (Fig. 1b,c), and the IBI signal (Fig. 1d).
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Fig. 1. (a) Respiratory flow signal acquired from a CSR patient, (b) a
signal excerpt showing the detection of TI and TE intervals, (c) definition
of inspiratory time, expiratory time and breath duration within a respiratory
cycle, and (d) the resulting IBI signal with the apnea threshold marked
(TTot ≥ 3).

B. Hurst exponent estimators
Numerous methods for estimating H, using different ap-

proaches to quantify the self-similar behavior and the long-
range dependence, have been reported and analyzed in the
literature. In this study, methods such as the Rescaled Range
or Fano factor were discarded, due to poor efficiency with our
data set type. Detrended Fluctuation Analysis and Discrete
Wavelet Transform-based Estimation methods were studied
to estimate the H exponents and characterize the analyzed
signals [12], [13].

• Detrended Fluctuation Analysis (DFA):
DFA to estimate long-range dependence in non-
stationary signals has already been used to quantify the
fractal content in IBI series.
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From time series of N samples, the signal B(i), i =
1, . . . ,N is integrated according to [17]

y(k) =
k

∑
i=1

(B(i)−Bave) (4)

where B(i) is the IBI signal at time i, and Bave is the
average value of the signal. Next, the data is divided into
segments of equal length, n. The linear approximation yn
is found for each separate segment, using least squares
fit (representing the trend in that segment). The average
fluctuation F(n) of the signal around the trend is given
by

F(n) =

√
1
N

N

∑
k=1

(y(k)− yn(k))2 (5)

F(n) is calculated for all n segments considered. Af-
terwards, the relation between them and the size of
segment n is analyzed. In general, F(n) increases with
the size segment. This relation is analyzed using a
double logarithmic graph, with a log-log graph of F(n)
versus n. A linear relationship indicates the presence
of fractal scaling and self-fluctuations. Therefore, these
fluctuations can be characterized by the slope of the line
F(n).

• Discrete Wavelet Transform-based Estimation (DWTE):
This method was proposed by Abry and Veitch [18],
based on Wavelet decomposition to estimate H. It is
considered a robust technique with non-stationarities,
even when signals contain short-range dependence. The
scaling properties of a wavelet basis optimally capture
the scaling self-similar nature of LRD processes.
The decomposition of the studied time series studied
Xn, provides the wavelet coefficients or details dx( j,k).
Next, the variance of the wavelet coefficients (Ej) is
estimated, according to scaling, by

Ej =
1
n j

n j

∑
k=1

|dx( j,k)|2 (6)

where n j is the length of the detailed signal at j level.
A graph of log(Ej) against j is created for computing H
by performing a weighted lineal regression over those
scales.

IV. RESULTS

Firstly, we studied the response of methods DFA and
DWTE using simulated H data. Secondly, we analyzed the
results of these methods applied to the elderly breathing
pattern, in order to identify possible differences between the
groups of patients studied.

A. Response of methods
In order to determine the response of both DFA and DWTE

methods applied to IBI signals, we performed a study of
200 fGn data series, considering H values between 0.5 <
H < 0.95 (20 data series to each H value). Fig. 2 shows the
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Fig. 2. Error estimation from different H values applying (a) the DFA
estimation method, and (b) the DWTE estimation method.

estimation error for each H value obtained applying the DFA
and DWTE methods.

According to the results, the two methods showed an ac-
ceptable low error. On average, the DWTE method presented
the lowest error, less than 5%, whereas with the DFA was
around 7%.

In addition, we analyzed the relation between the error in
the H estimation, the number of surrogates averaged, and
the data length (see Fig. 3). An increase in the number
of surrogates averaged was directly related with a better
estimation and lower dispersion values.

Fig. 3a shows the relation between the number of data se-
ries H estimations that were averaged, and the error obtained
in the estimation. Initially, the percentage error decreased
quickly when the numbers of estimations increased. Error
stabilized in both methods when 20 averages were used, but
only the DWTE method reduced the error to below 10%.

Fig. 3b illustrates the performance of the length depen-
dence of both methods, as a function of the number of
samples. Series with fewer than 250 samples had estimation
error values of over 20%, while larger series led to errors of
under 10%.

B. Assessing the elderly flow signal
Using the Wilcoxon test to compare the values obtained

with DFA and DWTE methods, we observed no statistically
significant differences. Consequently, we found that the two
methods were comparable. Subsequently, we applied the
Kruskal-Wallis test to different groups of patients analyzed
using the DFA and DWTE methods. Table I presents the
results obtained as the mean and standard deviation of
the estimated values for each group of patients, when we
compared both methods.

According to the results, non-periodic breathing patients
(with fast [nPB f ast] and slow [nPB slow] respiratory rates)
present the same variability with the DFA method, whereas
with the DWTE method the value is lower for the slow rate,
and slightly higher for the fast rate. When we compared the
periodic breathing group (PB), the variability was higher with
the DWTE method than with the DFA method. Finally, when
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Fig. 3. (a) Error estimation of fGn data series that was generated, as
a function of the number of H estimations averaged using the DFA and
DWTE methods. (b) Relation between the percentage error and the number
of samples in the generated data series, obtained with the DFA and DWTE
methods, respectively.

TABLE I
MEAN AND STANDARD DEVIATION OF DFA AND DWTE H

ESTIMATIONS FOR EACH GROUP OF PATIENTS

Group n= 41 DFA DWTE

nPB slow 12 0.67±0.10 0.63±0.16
nPB fast 7 0.67±0.20 0.69±0.06
PB 13 0.72±0.13 0.78±0.13
CSR 11 0.67±0.20 0.57±0.13

n: number of patients in each group.

we compared the Cheyne-Stokes respiration group (CSR),
this variability was significantly lower with the DWTE
method than with the DFA method.

The greatest differences in the H parameter between the
groups of patients were obtained with the DWTE method
(p = 0.002). Fractal behavior was higher in the nPB f ast
group than in nPB slow group. The PB group had the highest
fractal performance. This could be associated with a high
long-range dependence, while the CSR group showed the
lowest fractality, with behavior close to white noise and
short-range dependence

V. CONCLUSIONS
DFA and DWTE methods were used to study fractal

behavior in inter-breath interval signals, and to evaluate the
long-range dependence. Both methods were comparable on
the basis of the H exponent estimation.

With the DWTE method, we obtained a better estimation
of H, as a function of the average generated data series and
with an error of less than 5%. Considering the number of
samples, a generation data series of almost 20 surrogate data

can reduce the error to less than 10%. Therefore, this method
could be a useful tool for characterizing different respiratory
patterns in elderly patients.

The results indicate that multifractal behavior occurs in
this type of signals, which could describe the dynamic
behavior of breathing patterns. These studies could help
to investigate the relation between respiratory patterns and
several diseases, especially in relation to the cardiac and
respiratory system.
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