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Abstract—The neuroimaging data typically has extremely 

high dimensions. Therefore, dimensionality reduction is 

commonly used to extract discriminative features. Kernel 

entropy component analysis (KECA) is a newly developed data 

transformation method, where the key idea is to preserve the 

most estimated Renyi entropy of the input space data set via a 

kernel-based estimator. Despite its good performance, KECA 

still suffers from the problem of low computational efficiency for 

large-scale data. In this paper, we proposed a sparse KECA 

(SKECA) algorithm with the recursive divide-and-conquer 

based solution, and then applied it to perform dimensionality 

reduction of neuroimaging data for classification of the 

Alzheimer’s disease (AD). We compared the SKECA with 

KECA, principal component analysis (PCA), kernel PCA 

(KPCA) and sparse KPCA. The experimental results indicate 

that the proposed SKECA has most superior performance to all 

other algorithms when extracting discriminative features from 

neuroimaging data for AD classification. 

I. INTRODUCTION 

The neuroimaging techniques, such as magnetic resonance 
imaging (MRI), functional MRI, and positron emission 
tomography, are commonly applied to human brain imaging. 
Furthermore, the neuroimaging data based computer-aided 
methods have been proved very helpful for diagnosing brain 
disease diagnosis, such as Alzheimer’s disease (AD) [1] and 
Parkinson’s disease [2]. 

The neuroimaging data is of extremely high dimension but 
with small sample size, which will degrade classification 
performance. Therefore, dimensionality reduction methods 
have been used to overcome this problem for neuroimaging 
data, such as principal component analysis (PCA) [3], kernel 
PCA (KPCA) [4], nonnegative matrix factorization [5], and 
Laplacian Eigenmaps [6].  

PCA is a well-known linear feature extraction method and 
widely used in different applications. KPCA is the nonlinear 
extension of PCA with kernel method, which also performs 
well. Both PCA and KPCA perform dimensionality reduction 
by selecting the top eigenvalues and their corresponding 
eigenvectors. However, the resulting transformation may be 
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based on uninformative eigenvectors from the viewpoint of 
information theory [7]. 

The kernel entropy component analysis (KECA) is a 
newly developed data transformation method, whose its key 
idea is based on preserving the most estimated Renyi entropy 
of the input space data set via a kernel-based estimator [8]. 
Consequently, KECA doesn’t necessarily select the top 
eigenvalues and eigenvectors of the kernel matrix, but still 
reveals intrinsic structure related to information entropy of the 
input space data set [8]. Moreover, KECA typically produces 
a transformed data set with a distinct angular structure, which 
benefits the further signal processing [8]. Therefore, KECA 
has been successfully applied for data clustering [8][9], 
feature extraction [7][10], etc. 

Despite its many advantages, KECA still suffers from one 
important disadvantage that it might be quite inefficient when 
processing large-scale samples. Similar to KPCA, KECA 
requires evaluation of the kernel function in respect of all 
training samples when computing PC projection for a given 
input. This is unfortunate limitations, because the larger the 
size of the training samples, the lower the computational 
efficiency of KECA. 

Accordingly, a natural approach to improve the 
computational efficiency of PCA or KPCA is to integrate 
sparse solution in it, which has attracted much attention.  
Consequently, many sparse PCA (SPCA) and sparse KPCA 
(SKPCA) algorithms have been proposed in recent years 
[11][12][13][14][15][16][17][18]. However, to the best of 
our knowledge, sparse KECA (SKECA) algorithm has not 
been proposed yet, which in fact is very necessary for 
large-scale neuroimage data processing. 

There are mainly two methodologies to realize SPCA [17]. 
One is the greedy approach focusing on the solving of 
one-sparse-PC model, and the other is the block approach 
aiming to calculate multiple sparse PCs at once by utilizing 
certain block optimization techniques [17]. More recently, a 
recursive divide-and-conquer (ReDaC) based method was 
proposed to solve the SPCA problem [17]. It decomposes the 
original large and complex problem of PCA into a series of 
small and simple sub-problems, and then recursively solve 
them. The experimental results indicate the effectiveness of 
this SPCA algorithm.  

In this paper, we proposed a novel SKECA algorithm 
motivated by the ReDac solution [17], and then applied it to 
reduce the feature dimensions from neuroimaging data to 
discriminate AD from normal subjects. 
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II. METHOD 

A.  Kernel entropy component analysis 

Kernel entropy component analysis is very closely related 
to the KPCA, but it focuses on entropy components instead of 
principal components in PCA and KPCA.  

The derivation of KECA is not very similar to KPCA. It 
starts by expressing an estimate of the continuous Renyi 
(quadratic) entropy based on kernel density estimator, but it is 
actually quite surprising that it leads to a method so similar to 
KPCA, The briefly introduction of KECA is as following [8]. 

Let: R
d
→F denote a nonlinear map such that xt→φ(xt), and 

let φ(x)=[ φ(x1),…,φ(xN)]. Inner- products in the Hilbert space 

F can be computed via a positive semidefinite Mercer’s kernel 

function K: R
d
×R

d
 →R 

 )φ(x),φ(x)x,K(x *tt*tt                   (1) 

Defining (N×N) the Mercer kernel matrix K such that 

element (t,t*) of K equals k(xt,xt*), then K=φ
T
φ is an 

inner-product (Gram) matrix in F . The kernel matrix can be 

eigendecomposed as K =EDE
T
, where D is a diagonal matrix 

storing the eigenvalues λ1,…,λN and E is a matrix with the 

corresponding eigenvectors e1,…,eN as columns. 

A projection of φ onto a single principal axis is given by 

ui
T
=λi

1/2
ei

T
. Hence these projections of φ onto all principal 

axes are given by U
T
φ=D

1/2
E

T
, where U=[u1,…,uN] is the 

projection matrix.   

We define KECA as a k-dimensional data transformation 
obtained by projecting φ onto a subspace Uk spanned by those 
k feature space principal axes contributing most to the Renyi 
entropy estimate of data, obtaining the extracted KECA 
features  
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where the entropy estimate associated with φeca is 
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each term ψi  in this expression will contribute to the entropy 

estimate. We select eigenvalues and corresponding 

eigenvectors which contribute more to the entropy estimate. 

Note that the KPCA transformation is based solely on the top 

eigenvalues of K and will, in general, differ from KECA. 

For out-of-sample data point φ(x), we can obtain mapped 

feature  

*T-1/2*T*
KEDφUφ kkkeca                    (5) 

where K*=φ
T
φ* and φ* refer to a collection of out-of-sample 

data points. Furthermore, (2) can be written as: 

KEDEDφUφ
T-1/2T1/2T

kkkkkeca             (6) 

B. Sparse Kernel Entropy Component Analysis 

The SPCA problem has the following two mathematical 
formulations [17]: 
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where X=[x1,…,xN]
T∈R

N×d
, V∈R

d×k
 is the matrix of principal 

component loading array. U∈R
N×k

 is the matrix of projected 

data. 

The ReDaC method which depend on the second model(8) 
can easily separate the original large problem into a series of 
small problems, has proved its efficiency in SPCA [17]. 
Therefore, we employ this method to our proposed SKECA. 
Rewriting (3) as follows: 
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where Keca=EkDkEk
T
. The purpose of SKECA is obtaining 

sparse projection matrix: Ek of (2) is sparse. In this paper, we 

employ the ReDaC method to achieve this goal. We give the 

solution to the minimization problem of SKECA as follows: 
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where U=EkDk and V= Ek. Therefore, the objective function 

of the (10)can be formulated as follows: 
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where  


ij
jji

T
vuKE . It is then easy to separate the 

original large minimization problem into a series of small 

minimization problems, which are each with respect to a 

column vector ui of U and vi of V for i=1,…,k, respectively, as 

follows: 
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Through recursively optimizing these small   
sub-problems, the ReDac method for solving the minimization 
problem of  SKECA can then be naturally constructed.           

The calculation of  U and V is to recursively optimize each 
column, ui of U and vi of V for i=1,…,k, with other uj and vj 
fixed. By iteratively implementing the above procedures, U 
and V can be recursively updated until the stopping criterion 
is satisfied. 

We summarize SKECA algorithm as follows: KECA first 
calculates the aforementioned kernel matrix K using the given 
input data set X∈R

d×N
, and then gets U and V by U=EkDk and 

V= Ek; finally, obtains sparse projecting matrix V through 
ReDaC method. Thus, the transformed result of SKECA can 
be achieved through following formula: 

KVDVDφUφ
T-1/2T1/2T

kkkskeca           (14) 

where Uk =[ u1,…,uk], ui
T
=λi

1/2
vi

T
. 

Based on the ReDaC method, we also proposed a SKPCA 
algorithm with similar solution for comparison study. The 
main difference between SKECA and SKPCA is the 
initialization of U and V. Although the calculation 
formulations of initializations of U and V are same, which are 
U=EkDk and V=Ek, Dk and Ek are different because they 
depend on the selection of different eigenvalues and 
eigenvectors in SKECA or SKPCA. 

III. EXPERIMENT 

A.  Data 

To evaluate the performance of proposed SKECA 
algorithm, we applied it to neuroimaging data for 
dimensionality reduction. We selected the MR images from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) 
database [19]. In this paper, only ADNI subjects with all 
corresponding MRI, CSF and PET baseline data were 
included, which has been used in reference [20]. This yields a 
total of 103 subjects including 51 AD patients and 52 healthy 
controls (HC). For simplification, we only selected MR data 
for testing. The data pre-processing and feature extraction 
were same as in reference [20]. Specifically, we did anterior 
commissure (AC) - posterior commissure (PC) correction, 
skull-stripping, removal of cerebellum, and segmentation of 
structural MR images into three different tissues: grey matter 
(GM), white matter (WM), and cerebrospinal fluid (CSF). 
With atlas warping, each MR image was partitioned into 93 
region of interests (ROIs), and for each of the 93 ROIs, the 
volumes of gray matter tissue were calculated as a feature. 
Consequently, totally 93 features were extracted from each 
MR image. 

B.  Experimental Setup 

We compared the proposed SKECA with the proposed 
SKPCA ,SPCA [17], original KECA, KPCA and PCA. It is 
worth noting that the 4-order polynomial kernel was used for 
all kernel-based methods. To evaluate the performances of 
different algorithms, the extracted features by different 
methods were fed to k-nearest neighbor (KNN) classifier to 
discriminate AD from HC. As the reduced features by KECA 
and SKECA has a distinct angular structure, the Cosine 
similarity was applied in KNN for KECA and SKECA, while 
the Euclidean distance was used in KNN for other algorithms. 
The KNN classifier with different distance measure is to 
secure the best performances of different methods. 

The 10-fold cross-validation strategy was performed on 51 
AD patients and 52 HC subjects. The classification accuracy 
and sensitivity were selected as evaluation indices. A 
paired-samples t-test was used to statistically evaluate the 
performances between the proposed SKECA and other 
dimensionality reduction algorithms. The results were 
declared statistically significant when associated with p-value 
that is less than 0.05. 

IV. EXPERIMENTAL RESULTS 

Table 1 and Tables 2 show the classification results of 
different feature extraction algorithms at different feature 
dimensions. It can be found that the best classification 
accuracy and sensitivity are 91.47±0.82% and 92.00±2.67% 
by SKECA with 35 features. The SPCA ranks second only to 
SKECA with the classification accuracy of 90.16±0.87% and 
sensitivity of 86.03±2.33%. SKECA achieved at least 1% and 
4% improvements on accuracy and sensitivity. We also 
calculated the t-test between the best results of SKECA with 
those of other algorithms, and the proposed SKECA algorithm 
significantly improves the performance of discriminating AD 
from HC subjects, compared to other algorithms with all the 
p-value less than 0.05. It is also worth noting that all the 
sparsity-based algorithms significantly outperform the 
original algorithms without sparsity embedded, which 
indicates that sparse representation really improve the 
performance. 

In this work, the 93 ROIs were used as the original  
features. However, they are not equally important to represent 
AD. Therefore, it is necessary to further reduce feature 
dimensionality.  The results indicate that SKECA works well, 
which is mainly due to the following two factors: the distinct 
angular structure of transformed data set and the denoising 
ability introduced by sparsity. The angular structure of 
reduced features makes the classification more easily with 
Cosine similarity in KNN. Moreover, the noise is still 
inevitable, though the MRI data in our experiment have been 
pre-processed. Hence, the dimensionality reduction 
algorithms used for neuroimaging data should have strong 
robust ability for noise. The sparsity in SKECA not only 
improves the computational efficiency, but also makes 
SKECA more robust against noise. The reason is that the 
output transformed data of SKECA can be regarded as the 
weighted sum of kernel matrix K with sparse coefficient 
matrix V. Therefore, the more relative data are selected for 
calculation of inner product, which reduces the noise. 
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TABLE I.  CLASSIFICATION ACCURACIES OF DIFFERENT DIMENSIONALITY REDUCTION ALGORITHMS (UNIT: %) 

Dimension 

Algorithm 
10 15 20 25 30 35 40 

PCA 75.12±2.45 73.32±3.30 72.73±2.88 72.35±2.60 72.55±2.26 72.64±2.75 73.75±2.56 

KPCA 70.73±3.49 65.99±2.36 67.53±2.36 69.98±3.14 69.80±2.26 66.95±3.47 66.66±2.98 

KECA 72.29±1.84 71.41±2.75 72.13±2.87 73.01±3.23 72.42±1.81 71.22±2.68 70.74±3.75 

SPCA 90.16±0.87 88.96±0.79 88.69±1.08 88.27±0.73 87.33±0.78 87.46±1.18 86.00±0.72 

SKPCA 82.94±1.59 81.05±1.53 82.90±1.86 83.63±1.58 85.43±1.53 84.70±1.40 83.27±1.60 

SKECA 86.96±0.88 88.19±1.51 88.31±1.24 88.68±1.09 89.38±0.75 91.47±0.82 90.14±0.90 

TABLE II.  CLASSIFICATION SENSITIVITIES OF DIFFERENT DIMENSIONALITY REDUCTION ALGORITHMS (UNIT: %) 

Dimension 

Algorithm 
10 15 20 25 30 35 40 

PCA 66.43±3.02 68.23±4.03 67.50±2.99 69.00±4.02 66.83±3.70 68.57±4.88 66.70±3.82 

KPCA 70.00±4.22 62.07±3.23 59.20±4.06 62.03±4.59 63.27±3.36 57.97±4.80 55.13±4.75 

KECA 69.63±4.17 73.33±4.10 75.17±3.88 75.87±4.53 75.73±3.69 73.20±2.99 75.43±2.60 

SPCA 86.03±2.33 84.20±2.68 84.03±1.96 84.03±1.71 82.50±3.78 83.33±3.56 81.20±2.03 

SKPCA 81.93±3.87 77.40±3.71 77.43±2.74 78.50±2.67 81.70±4.03 77.67±3.77 76.27±3.48 

SKECA 86.00±2.42 89.00±2.62 88.73±2.91 89.17±2.65 89.40±2.31 92.00±2.67 91.07±2.30 

V. CONCLUSION 

In this paper, we proposed a sparse KECA algorithm for 
dimensionality reduction, and then applied it to MR images to 
extract discriminative features for classification of AD. The 
experimental results indicate that our proposed algorithm can 
significantly improve the performance of dimensionality 
reduction, leading to better classification performance 
compared with other algorithms. In the future work, more high 
dimensional neuroimaging data will be tested by the proposed 
SKECA algorithm. We will also further improve the proposed 
SKECA to have high classification performance with less 
feature dimensions. 
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