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Abstract— Induced pluripotent stem cells (iPSC) can be 

derived from fully differentiated cells of adult individuals and 

used to obtain any other cell type of the human body. This 

implies numerous prospective applications of iPSCs in 

regenerative medicine and drug development. In order to obtain 

valid cell culture, a quality control process must be applied to 

identify and discard abnormal iPSC colonies. Computer vision 

systems that analyze visual characteristics of iPSC colony 

health can be especially useful in automating and improving the 

quality control process. In this paper, we present an ongoing 

research that aims at the development of local spatially-

enhanced descriptors for classification of iPSC colony images. 

For this, local oriented edges and local binary patterns are 

extracted from the detected colony regions and used to 

represent structural and textural properties of the colonies, 

respectively. We preliminary tested the proposed descriptors in 

classifying iPSCs colonies according to the degree of colony 

abnormality. The tests showed promising results for both, 

detection of iPSC colony borders and colony classification. 

I. INTRODUCTION 

Induced pluripotent stem cells (iPSC) [1] can be derived 
from the differentiated cells of any adult individual and used 
to obtain different cells of the human body (e.g. neurons, 
functional cardiomyocytes, smooth muscle cells). The 
remarkable property of iPSCs to differentiate into any other 
cell type suggests numerous applications of iPSCs in 
regenerative medicine and drug development [2]. To be valid 
for research and therapeutic purposes, iPSCs must remain 
undifferentiated during culturing and passaging processes. 
Therefore, a continuous quality control is performed to 
identify and discard abnormal iPSC colonies, for example, 
colonies that started to differentiate spontaneously. 

Visual inspection and chemical testing are currently the 
most common procedures to evaluate the quality of 
undifferentiated iPSC colonies [3]. However, man-operated 
visual inspection is very labor and time consuming while 
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chemical tests can damage the colony under analysis. 
Computer vision, on the other hand, supports non-invasive 
and fully automatic approach to cell colony classification 
relying solely on visual characteristics of the colony health. 
One of the essential prerequisites for accurate colony 
classification is to find descriptive, robust yet fast and easy-
to-compute colony representation. The current state of the art 
in this area includes research on wavelet features [4], various 

texture descriptors [3,5], and intensity histograms [6]. 

In this study, we concentrate on structural and textural 
features, namely, local oriented edges and local binary 
patterns. Local oriented edge (LOE) operator [7] encodes 
local edges of multiple orientations at different levels of 
image resolution. LOE operator imitates low-level pre-
attentive mechanisms of visual processing in the human 
visual cortex [8]. Previously, LOE descriptors have been 
successfully applied to pattern recognition tasks [7,9]. Local 
binary pattern (LBP) operator [10] encodes local primitives 
such as points, curved lines, and spots. LBP descriptors have 
been used for object representation in numerous 
applications. It has been shown [11] that concatenated LOE-
LBP histograms that combine spatial and textural image 
features lead to better classification performance. 

The contribution of this study is twofold. Firstly, we 
present empirical results on the applicability of a graph-
based segmentation method [12] for the task of iPSC colony 
border detection. Secondly, we present preliminary results of 
testing locally-computed spatially-enhanced LOE-LBP 
histograms for the task of iPSC colony representation and 
classification. Section 2 describes the image database, 
Section 3 explains the overall proposed methodology, 
Section 4 presents early results for both, detection of iPSC 
colony borders and colony classification, and, finally, 
Section 5 concludes the paper and describes future research. 

II. DATABASE 

The database consists of 47 feeders-free iPSC colony 
images taken over a period of 2-10 days. The images of 
1608×1208 pixel resolution were taken with Nikon Eclipse 
TS100 microscope, Imperx IGV-B1620M-KC000 camera, 
and JAI Camera Control Tool software. Image acquisition 
conditions differed among photographing sessions resulting 
into intra- and inter-image variations in magnification, 
lighting, sharpness, and exposure. The number and size of 
the colonies in the image varies; however, the colony of 
interest is typically located in the center of the image. In 
some cases, the colony is not fully visible in the image 
(Figure 1,b). The boundaries of central colonies were 
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 (a) (b) (c) 

Figure 1. Examples of (a) “good”, (b) “semigood”, and (c) “bad” iPSC colonies with manually annotated boundaries (depicted by the red color). 

manually annotated by a laboratory technician who is 
specialized in iPSC colony culturing. Based on visual 
inspection of the colonies the same specialist classified 
images into “good” (i.e. undifferentiated, healthy colonies 
without abnormalities), “semigood” (i.e. colonies with small 
abnormalities), and “bad” (i.e. damaged or partially 
differentiated colonies) categories (Figure 1). The main 
criteria for determining iPSC colony normality relied on the 
following visual characteristics: (1) translucent, 
homogeneous, and tight texture and intensity (e.g. absence of 
dark areas in the middle of the colony) and (2) distinctively 
sharp and near-circular shape of the colony border. In total, 
there are 13 images of “good”, 19 images of “semigood”, 
and 15 images of “bad” colonies in the database. For 
classification, the image database was divided into training 
set (6 “good”, 7 “semigood”, and 9 “bad” images) and 
testing set (7 “good”, 8 “semigood”, and 10 “bad” images). 

III. METHODOLOGY 

A block-diagram of the proposed classification scheme is 
shown in Figure 2. First, the images are converted to a gray 
scale representation. A graph-based segmentation method 
[12] is applied to divide the image into foreground and 
background areas (Figure 3,b). This method preserves detail 
in low-variability image regions while ignores details in 
high-variability regions. As recommended by the authors, we 
used Gaussian blur with a root mean square deviation σ=0.8 
that does not produce visible changes to the image but helps 
to remove artifacts. Other parameters used are: k=890 to set 
a scale of observation and min=50000 to remove small 
segmented components. The central largest component is 
selected as a colony candidate. The raw segmentation mask 
is further dilated/eroded and processed by Canny edge 
detector to find the colony borders. In case of mask dilation, 
the resulting contour is frequently slightly larger than the 
manually annotated contour. The largest found contour is 
further smoothed by the Gaussian operator. 

Next, convexity defect analysis is performed iteratively 
to find and split possibly merged components (Figure 3,c-d). 
For this, convex hull points are identified from the found 
contour. The resulting shape is evaluated according to 
several parameters which are defined empirically: (1) depth 
of the convexity defects, (2) distance between two points of 
maximal depth of convexity defects, and (3) relative size of 
presumably merged components. After the colony border has 
been detected in the image, a two-dimensional grid is 

constructed that divides the localized colony region into 
MN   separate blocks (Figure 3,h), where N and M are 

numbers of the grid columns and rows, respectively. Image 
features are then computed in each block of the grid and 
concatenated into a single feature histogram of size LMN   

where L defines a number of histogram bins. Thus, the 
resulted spatially-enhanced histogram represents the 
distribution of local features over the whole localized colony 
region while preserves information about feature occurrences 
in different parts of the region. Grid blocks can have a 
certain degree of overlap which improves the classification 
performance [11]. Intensity, LOE, and LBP features are used 
in this study to form spatially-enhanced histograms of the 
colony regions. In contrast to differentiated “bad” colonies, 
undifferentiated “good” colonies contain homogeneous and 
tight textures, allowing us to assume that shapes of “good” 
colony histograms will be similar in every block of the grid 
while “bad” colonies will most probably reveal arbitrary 
distribution of features among different blocks of the grid. 

The final classification is performed using two machine 
learning methods: multi-class AdaBoost.MH (MultiBoost) 
and support vector machines (SVM). MultiBoost [13] is 
based on a pool of simple classifiers and uses their weighted 
vote for final classification. Decision stumps with different 
weight policy are used as base classifiers. SVM [14] 
constructs a plane in a multi-dimensional space to separate 
object classes. Linear and non-linear SVM with radial basis 
function kernel are used. In the training phase, the classifiers 
learn discriminant features from the training set. The best 
SVM parameters C and γ are selected empirically by 10-fold 
cross validation procedure in a grid approach. In the testing 
phase, one-against-all scheme is used for classification of the 
testing set into the given categories. 

 

 

 

 

 

 

 

 

 

   

Figure 2. Block-diagram of the proposed classification scheme. 
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 (e) (f) (g) (h) 

Figure 3.  (a) “Good” iPSC colony; (b) raw segmentation mask; (c-d) convexity defect analysis iterations with convex hull (green), defect points (blue), 

and points of maximal depth of convexity defect (red); (e) manually annotated (red) and automatically detected (blue) colony borders; (f) useful detected 

area; (g) detected noise; and (h) 6×6 image grid with 80% block overlap (the size of a single block is depicted by the red color). 

A. Structural and textural features 

Local oriented edge (LOE) operator [7] detects structural 

features by convolving image pixels in a local 

neighbourhood. The kernels used for convolution result from 

differences of two Gaussians with shifted centres and encode 

magnitude and orientation of a local edge in the central pixel 

of the neighbourhood. ), l,s,LOE( k   operator describes 

occurrences of local edges of k orientations in the colony 

region, where k  is an angle of the Gaussian rotation; s 

defines a pixel size of the kernel; and l is an image 

resolution. The length of LOE histogram is defined by k edge 

orientations used (Figure 4). Prior to computing LOE 

descriptors, the image is smoothed l times with the Gaussian 

filter to eliminate noise. 

Local binary pattern (LBP) [10] is a texture descriptor that 

associates a binary code to each pixel in the image that is 

computed by thresholding differences between the pixel 

itself and surrounding pixels within a local neighborhood. 

LBP(P,R) operator produces 2
P
 different binary codes that 

are formed by P pixels in the local circular neighbourhood of 

radius R. “Uniform patterns” are used to shorten the length 

of LBP feature vector. A combined 

)), LBP(P,Rl,s,LOE( k   histogram is constructed by 

concatenating LOE histogram to the end of LBP histogram 

(or wise versa) in each block of the image grid (Figure 5). 

IV. RESULTS AND DISCUSSION 

A.  Colony border detection 

The automatically detected colony border S was compared 

against the ground truth A (i.e. manually annotated colony 

border). Table 1 shows performance evaluation metrics for 

the border detection output. In general, we used shape 

matching to evaluate how exactly the method detects colony 

borders while area metrics were utilized to evaluate mutual 

spatial position of A and S in the image plane.  

Shape matching is based on Hu moments [15] which are 

invariant regarding object translation, rotation, and scale 

change. We used this more general metric rather than a pixel 

error distance between A and S because the colony 

boundaries were annotated by a single person; therefore, the 

ground truth data may contain errors and subjective 

decisions. Table I shows small values for the shape matching 

metric, meaning that in general the method was successful in 

finding the true shape of the colony borders. 

Useful area shows the ability of the method to find image 

areas which are useful for the classification step (i.e. the 

inner part of the colony, see Figure 3,f). It is calculated as a 

ratio between the area of spatial intersection A ∩ S and the 

area of A. The average values of the useful detected area are 

close to 1 in Table 1, meaning that the method tends to 

 

Figure 4. Example of the orientation template for calculating LOE 

features with  5.22kk , 160 k . Picture adapted from [7]. 

(a)  

 

(b)  

Figure 5. Construction of the spatially-enhanced concatenated LOE-LBP 

histogram of the image. 
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 (a) (b)  (c)  

  
 (d) (e) (f) 

Figure 6. Examples of (a-c) succesful (red) and (d-f) wrong (blue) border detection results for “bad” iPSC colonies. 

 

detect colonies as a whole. This is less true for “bad” 

colonies since they are more heterogeneous in intensity and 

texture as Figure 6 demonstrates. 

Noise metric shows the ability of the method to discard 

useless image areas (i.e. neighboring colonies and culturing 

medium, Figure 3,g). It is calculated as a ratio between the 

detected noise and the area of A. This metric is rather small 

as Table 1 shows. The results of the colony border detection 

may vary depending on the parameter choice but the overall 

performance of the method is considered as accurate. 

TABLE I.  PERFORMANCE METRICS OF COLONY BORDER DETECTION 

Colony category Shape matching Useful area Noise  

“Good”  0.07 1.00 0.12 

“Bad”  0.11 0.94 0.09 

“Semigood”  0.18 0.96 0.18 

Total 0.12 0.97 0.13 

 

B. Classification 

In this study, the features were extracted from manually 

annotated colony regions to ensure that the classification is 

not affected by the errors of the colony border detection. 

Because the number of images used for training and testing 

is rather small, we report raw confusion matrices from which 

the reader can get an impression of the method’s ability to 

classify images into the right category. 

In overall, Multiboost classifier obtained better results 

than SVM classifier. Tables II-V show the best classification 

results obtained in different setups for intensity, LOE, LBP, 

and LOE-LBP spatially-enhanced histograms. Tables II-III 

show the results for 3-class Multiboost classification while 

Tables IV-V show the results for 2-class Multiboost 

classification. In the latter case, colony categories with some 

abnormalities (i.e. “semigood” and “bad”) were combined 

into a single class. 

As expected, the calculation of histograms from MN   

spatial grid improved the classification results. In contrast, 

when the histograms were computed from the whole area of 

the colony, the average classification rate was not higher 

than 51%. However, the increase of the block amount 

improved the classification results only until a certain point. 

Thus, the most promising classification results were obtained 

using MultiBoost with normalized LOE(32,0.8,5,2) 

histograms on 6×6 grid with 80% block overlap (average 

classification rate is 80% for 3-class classification and 100%  

for 2-class classification). The following increase of the 

block amount did not improve the classification results. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented early results from the ongoing 

research that aims at the development of local spatially-

enhanced structural and textural descriptors for classifying 

iPSC colony images. It appears that MultiBoost 

classification with normalized LOE(32,0.8,5,2) histograms 

on 6×6 grid with 80% overlap achieved the best 

classification rates. However, a caution should be given to 

the interpretation of the current results as the image database 

used is rather small. More detailed research is needed to 

understand true abilities of the presented approach in 

classifying iPSC colony images. 

We have identified several options for future research. 

First, some feature selection method will be applied to 

reduce the dimensionality of the obtained feature histograms 

and, therefore, improve their discriminative power for the 

classification. Second, keeping in mind that the task is to 

identify abnormal colonies, “bad” and “semigood” categories  
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TABLE II.  3-CLASS MULTIBOOST CLASSIFICATION CONFUSION 

MATRIXES FOR 6×6 GRID WITH 80% OVERLAP 

 

Intensity LBP(8,3) 
LOE 

(16,0.8,3,2) 

LOE 

(32,0.8,5,2) 

LOE 

(16,0.8,3,2)-

LBP(8,3) 

LOE 

(32,0.8,5,2)-

LBP(8,3) 

       

 3   1   3 

0   8   0 

1   5   4 

6   1   0 

1   5   2 

3   3   4 

2   1   4 

2   5   1 

2   3   5 

7   0   0 

0   4   4 

0   1   9 

6   0   1 

1   5   2 

4   3   3 

5   1   1 

1   5   2 

2   4   4 

 R = 0.61 R = 0.63 R = 0.47 R = 0.80 R = 0.59 R = 0.58 

 - “good”,  - “bad”, and  - “semigood” colony categories; R is average classification rate. 

TABLE III.  3-CLASS MULTIBOOST CLASSIFICATION CONFUSION 

MATRIXES FOR 12×12 GRID WITH 80% OVERLAP 

 

Intensity LBP(8,3) 
LOE 

(16,0.8,3,2) 

LOE 

(32,0.8,5,2) 

LOE 

(16,0.8,3,2)-

LBP(8,3) 

LOE 

(32,0.8,5,2)-

LBP(8,3) 

       

 5  1  1 

2  5  0 

2  7  1 

5   1   1 

0   5   3 

1   4   5 

4   0   3 

1   7   0 

2   5   3 

4   1   2 

2   2   4 

4   2   4 

4   0   3 

2   5   1 

1   4   5 

3   1   3 

0   6   2 

2   4   4 

 R =0.48 R = 0.61 R = 0.58 R =0.41 R = 0.57 R =0. 53 

 - “good”,  - “bad”, and  - “semigood” colony categories; R is average classification rate. 

TABLE IV.  2-CLASS MULTIBOOST CLASSIFICATION CONFUSION 

MATRIXES FOR 6×6 GRID WITH 80% OVERLAP 

 

Intensity LBP(8,3) 
LOE 

(16,0.8,3,2) 

LOE 

(32,0.8,5,2) 

LOE 

(16,0.8,3,2)-

LBP(8,3) 

LOE 

(32,0.8,5,2)-

LBP(8,3) 

       

 3    4 

2   16 

3    4 

6   12 

0     7 

0   18 

7     0 

0   18 

4    3 

7   11 

4    3  

7   11 

 R =0.66 R = 0.55 R = 0.50 R =1.00 R = 0.59 R =0.59 

 - “good” and   - “bad & semigood” colony categories; R is average classification rate. 

TABLE V.  2-CLASS MULTIBOOST CLASSIFICATION CONFUSION 

MATRIXES FOR 12×12 GRID WITH 80% OVERLAP 

 

Intensity LBP(8,3) 
LOE 

(16,0.8,3,2) 

LOE 

(32,0.8,5,2) 

LOE 

(16,0.8,3,2)-

LBP(8,3) 

LOE 

(32,0.8,5,2)-

LBP(8,3) 

       

 3    4 

3   15 

3    4 

6   12 

0     7 

0   18 

4   3 

3  15 

3    4 

4   14 

2    5  

2   16 

 R =0.63 R = 0.55 R = 0.50 R =0.70 R = 0.59 R =0.59 

 - “good” and   - “bad & semigood” colony categories; R is average classification rate. 

can  be given more weight  as compared to  “good” category. 

Considering that the obtained results for iPSC colony border 

detection are rather accurate for all three colony categories, 

we expect that the analysis of the border’s shape and 

sharpness can be performed and features can be calculated 

straight from the detected colony areas. Another extension of 

the proposed methodology is to perform analysis in a 

spatiotemporal domain similar to the previous studies [11] 

which proved the advantage of such approach. Thus, colony 

evolution can be captured over a period of time and features 

can be extracted from the three orthogonal planes of the 

received image volume. Yet another important enhancement 

concerns the quality and amount of images in the database. 

Inspired by the current results, in our future research we plan 

to considerably extend the image database, making it 

consistent with regard to image acquisition conditions. 
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