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Abstract— The current diagnostic technique for melanoma
solely relies on the surface level of skin and under-skin infor-
mation is neglected. Since physiological features of skin such
as melanin are closely related to development of melanoma,
the non-linear physiological feature extraction model based
on random forest regression is proposed. The proposed model
characterizes the concentration of eumelanin and pheomelanin
from standard camera images or dermoscopic images, which
are conventionally used for diagnosis of melanoma. For the
validation, the phantom study and the separability test using
clinical images were conducted and compared against the state-
of-the art non-linear and linear feature extraction models.
The results showed that the proposed model outperformed
other comparing models in phantom and clinical experiments.
Promising results show that the quantitative characterization of
skin features, which is provided by the proposed method, can
allow dermatologists and clinicians to make a more accurate
and improved diagnosis of melanoma.

I. INTRODUCTION

With the advancement of imaging acquiring devices, the
use of standard camera images is not limited at the surface
level of objects, but extended to extract more information
beyond what people can see. Skin imaging is one of the
active research areas, where takes an advantage from the
current imaging technology by finding physiological features
underneath skin [1], [2]. Skin is composed of multiple layers
and each layer has a different combination of pigments,
such as melanin and hemoglobin [3], [4]. These molecules
or physiological features play a key role to determine the
colour of skin [5], and thus, identification and quantitative
measurement of physiological features persistently attracts
interests of researchers from image processing [6], cosmetics
[7], and medical diagnosis [8], [9].

Medical diagnosis, particularly for melanoma, can be
benefited from physiological feature extraction. Melanoma
is the deadliest form of skin cancer [10]. It typically origi-
nates from melanocytes, which is responsible for producing
melanin. What makes melanoma dangerous is the ability to
metastasis. Therefore, it is crucial to diagnose this disease as
early as possible before it spreads to other parts of body [11].
Initial diagnosis of melanoma is typically conducted with the
naked eyes of clinicians or dermatologists using diagnostic
criteria. While this has been the standard procedure for
diagnosing melanoma, the limitation of this method lies in
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individual subjectivity of diagnosis of clinicians, which is
solely based on the visual inspection of the lesion. Some
studies showed that by simply quantifying the diagnostic
criteria, the accuracy of the diagnosis of melanoma has been
improved [12], [13]. To move a step further, incorporating
physiological features, for example melanin and hemoglobin,
which are known to be related to melanoma, would improve
results even more.

Melanin, which is produced from melanocytes, is one
of the most prevalent pigments in skin, and has two sub-
types: eumelanin and pheomelanin. Eumelanin gives brown-
blackish colour while pheomelanin colors red-yellowish.
Skin color is dominated by eumelanin [5], and the ratio
between the concentration of pheomelanin and eumelanin
present in human skin varies greatly from individual to
individual. While a major function of melanin is providing
a protection from ultraviolet (UV) radiation, pheomelanin
is known to be more vulnerable than eumelanin to DNA
damages or mutations, caused by UV radiation [14]. This
vulnerability of pheomelanin suggest that pheomelanin plays
an important role to develop a cancer. Salopek et al. [15] and
Hu et al. [16] found that the concentrations of pheomelanin
increased in melanomic cells, when compared with normal
cells.

Since typical imaging modalities used by clinicians and
dermatologists are standard camera images or dermoscopic
images, the same modalities were adopted into physiological
feature extraction. Colour determination of skin from various
pigments is very complicated process involving reflection,
scattering and absorption of light. Moreover, from the best of
our knowledge, the most skin feature extraction models use
a linear model based on Lambert-Beer law, which accounts
only for the absorption of skin, leaving the scattering and
reflection ignored [7], [17]. Cavalcanti et al. [18] proposed
a non-linear nearest-neighbour model, that extracts the con-
centrations of eumelanin and pheomelanin, and the model
includes the scattering and reflection as well as absorption.
However, it is a computationally expensive model, and thus
if faces a challenge when more features added to the model
or dealing with a large set of data.

The contribution of the paper is to propose a non-linear
random forest regression model to extract important physi-
ological features from standard camera or dermoscopic im-
ages. For the scope of this paper, eumelanin and pheomelanin
are employed. For validation, phantom study and separability
test with clinical skin lesion images are conducted and com-
pared with the state-of-the-art non-linear and linear feature
extraction model.
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II. METHOD

A. Problem Formulation

When light hits the surface of skin, the light is remit-
ted based on the composition of the physiological features
under the skin. The remitted light can be decomposed into
three major spectral bands, known as red, green, and blue
band, and the intensities of each band are captured by the
image acquiring device (i.e., camera). For explaining the
above phenomenon mathematically, the concentrations of the
physiological features of skin is expressed,

p = {pk}k=eumelanin,pheomelanin,... , p ∈ P (1)

where subscript k represents different physiological skin
features such as eumelanin, pheomelanin, oxygenated
hemoglobin, or deoxygenated hemoglobin. P is the space of
all possible physiological features inside skin tissue. Given
p, obtaining skin lesion image can be formulated as follows:

i = f(p) (2)

where f computes the intensities in the three spectral bands,
i. Moreover, i can be written as follows:

i = {in}n=r,g,b , i ∈ I (3)

where I describes the space of the acquired image.
Based on the above formulation, the inverse model func-

tion, which estimates the concentrations of physiological
features from skin images can be stated as

p = f−1(i) (4)

The forward model function, f , cannot be described as
a simple linear model, because interaction between light
and the different layers of skin is complex process, which
involves different degree of reflection, scattering, and absorp-
tion at each skin layer. Therefore, in this paper, a non-linear
regression model was proposed for the inverse model with
the assumption that the interaction between light and skin is
non-linear.

B. Non-Linear Random Forest Regression Modeling

As aforementioned, the proposed model estimates the
concentration of physiological features from skin lesion
images via random forest regression. The basic principle
of random forest is to generate many decision trees, and
aggregate their results [19]. One advantage of this model
is that results are more robust and less biased than other
regression models that depends on single or few classifiers
[20]. For each tree, every node is split using the best among
a subset of predictors, which are randomly chosen at that
node. Let X be the p-dimensional vector of variables or
predictors that X = x1, x2, · · · , xp, then an ensemble of
N trees be h1(X, θ1), h2(X, θ2), · · · , hn(X, θn) where θi is
an independently distributed random vector. Each classifier
computes the output, Ŷi, as a form of numerical values,

Ŷi(X) = hi(X, θi) (5)

and the final output for random forest regression is the
average of the outputs from trees as following:

Ŷ =
1

N

N∑
i=1

Ŷi(X) (6)

In this study, the intensities from the three spectral bands
(red, green, and blue band for standard camera and dermo-
scopic images) are used as predictors, and the concentrations
of eumelanin and pheomelanin are computed as outputs of
the algorithm.

C. Experimental Design

To train the proposed model, the forward model, proposed
by Baranoski et al. [21] (i.e., biophysically-based spectral
model of light interaction with human skin) was employed
to generate training data, because the concentrations of phys-
iological skin features is not easily measured or extracted
from clinical images. Given the concentrations of physio-
logical skin features, Baranoski’s forward model calculated
the corresponding reflectance values by simulating the light
propagation via Monte Carlo simulation, and the reflectance
values were converted to RGB values using simple linear
function [22]. For this study, the concentrations of eumelanin
and pheomelanin were changed from 20 to 300 g/L, and 4
to 60 g/L with step of 4 g/L, respectively, while other model
parameters were kept at default values.

The validation of the proposed method was conducted
using cross-validation, phantom study and separability test.
Non-linear nearest neighbor model (CNN) [18] was used for
comparison as well as linear regression model (LRM) [23]
to be used as a baseline model. Both models were trained
using the same dataset, which was generated by Baranoski’s
forward model.

Fig. 1. a) The phantom image created based on melanomic image, and its
concentration map of b) eumelanin and c) pheomelanin

1) Phantom Study: In order to investigate the proposed
algorithm in more clinical setting, a phantom image was
created. First, a malignant lesion was delineated from mela-
nomic image. The concentrations of eumelanin and pheome-
lanin were then extracted using the random forest regression
model. Baranoski’s forward model was followed to simulate
the RGB values for the corresponding physiological feature
concentrations, and the calculated colours were applied back
to delineated lesion as shown in Fig. 1. The proposed RF
method, CNN, and LRM extracted the concentrations of
eumelanin and pheomelanin from the phantom image.
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2) Separability Test: Since the actual concentrations of
eumelanin and pheomelanin cannot be acquired from clinical
images, the direct validation of the proposed method is
not feasible. To bypass this issue, the separability test was
performed. The purpose of the separability test is to examine
how each feature can uniquely separate a malignant lesion
from a benign lesion, and thus the strength of features
from different extraction techniques can be quantitatively
measured. The Fisher criterion scores were computed based
on the performance of the proposed model and CNN as a
measure of separability [24]. A dataset of 112 clinical images
(39 melanoma, 63 non-melanoma) from DermIS [25] and
DermQuest [26] was used for the experiment.

III. RESULTS

To compare the performance of the proposed method
with two other state-of-the-art techniques, three different
validations were conducted. First of all, cross-validation was
performed. Samples that contains various combination of
eumelanin and pheomelanin concentrations and their corre-
sponding RGB values, was generated according to II-C. With
a total of 1065 samples, 90% of them were randomly chosen
as training set, and the rest 10% as testing set. Each algorithm
(i.e. RF, CNN and LRM) were trained and tested with a total
of 50 iterations, and the root-mean-square-error (RMSE)
of predicted physiological concentrations from models are
shown in Table I.

TABLE I
CROSS-VALIDATION: COMPARING RMSE OF EUMELANIN AND

PHEOMELANIN THAT WAS PREDICTED FROM RF, CNN, AND LRM (G/L)

RF (g/L) CNN (g/L) LRM (g/L)
Eumelanin 1.2 4.0 5.0

Pheomelanin 2.3 8.0 8.8

Secondly, the models were validated via phantom, which
was created based on a clinical image. Unlike cross-
validation test, feature extraction model was built based on
the entire colour map. RMSE of eumelanin and pheomelanin
was used as a measure of comparison (Table II).

TABLE II
PHANTOM STUDY: COMPARING RMSE OF EUMELANIN AND

PHEOMELANIN THAT WAS PREDICTED FROM RF, CNN, AND LRM (G/L)

RF (g/L) CNN (g/L) LRM (g/L)
Eumelanin 1.9 2.0 8.0

Pheomelanin 3.2 5.2 15.8

Lastly, Fisher criterion scores were computed for RF and
CNN from a total of 112 clinical images in Table III.

TABLE III
COMPARING FISHER CRITERION SCORES FROM RF AND CNN USING

CLINICAL MELANOMIC AND NON-MELANOMIC IMAGES

RF CNN
Fisher criterion score 0.0439 0.0046

IV. DISCUSSION

In this paper, we proposed a novel technique to extract
physiological features (i.e., eumelanin and pheomelanin)
from standard camera images. The importance of physi-
ological features is that the concentration map of those
features can provide additional information to clinicians
and dermatologists, which is typically neglected in current
diagnostic system. For example, some studies showed that
the increase in eumelanin and pheomelanin concentrations
could be used as bio-markers for melanoma [15], [16]. The
concentration maps, which were generated by the proposed
model, are consistent with their findings as the elevation
of eumelanin and pheomelanin concentrations was observed
in melanomic image, compared to non-melanomic image
(Fig 2).

For the validation, the proposed method via random for-
est regression model was compared and validated against
CNN, since Cavalcanti’s nearest neighbor model is the only
non-linear model found in literature. Moreover, the linear
regression model was also compared to serve as a baseline
model. From both of cross-validation and phantom study,
RF model outperformed over CNN and LRM when root-
mean-square-error was compared with predicted concen-
trations of eumelanin and pheomelanin with ground truth.
The performance of LRM was inferior to other methods
particularly in the phantom study. This implies that the
optical properties of physiological features under skin are
far more complex, and thus, it is difficult to describe the
interaction between light and the physiological features in
linear fashion. When two non-linear models were compared,
the proposed method yielded the superior results not only
in RMSE comparison but also in computation time. For
phantom study, RF predicted about 15% faster than CNN
as the computation time for RF and CNN was measured
7.9s and 9.1s, respectively, using the machine equipped with
Intel Core i7-4770 @ 3.40GHz, 16.0GB ram, and Intel HD
Graphics 4600. Given that the dimension of the phantom
used is 520 by 460, and it is a single image, the computation
time of CNN will likely increase exponentially when larger
dataset is used and more features are taking into account for
the system.

To validate the quality of the extracted features from CNN
and RF, the Fisher criterion score was employed. The Fisher
criterion score is calculated by the distance between two
classes over the sum of sparsity of each class. Therefore,
it indicates the ability to separate benign and malignant
cases for the given features, and the higher scores repre-
sent stronger ability for classification. From two non-linear
models, RF scored 0.04 and 0.0044 for CNN. This results
show that the features extracted using RF more effectively
discriminate benign and malignant melanoma than the ones
using CNN.

While the proposed physiological extraction model
showed the promising results compared to the current state-
of-the-art, it requires further improvements in order to be
adopted in the clinical setting. First of all, more skin features
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Fig. 2. Top: a) melanomic skin lesion image, and its concentration map of b) eumelanin and c) pheomelanin. Bottom: d) non-melanomic skin lesion
image, and its concentration map of e) eumelanin and f) pheomelanin

need to be extracted to examine melanoma. For example,
hemoglobin also plays an important role for the interaction
between light and human skin as it is prevalent in skin and a
major absorber and scatterer. Moreover, given that the ground
truth used for this study was synthetically generated based
on computer model, Baranoski’s forward model, the clinical
validation of the proposed method is required.

V. CONCLUSIONS

We have proposed a novel physiological skin feature
extraction model. A non-linear model was created based on
random forest regression, and it extracts the concentration
of two skin features, eumelanin and pheomelanin, on skin
lesion. The proposed method was validated and compared
with the non-linear nearest neighbor model and the linear
regression model, and the proposed technique outperformed
over other models in both cross-validation and phantom
study. The proposed method can provide an additional infor-
mation of the important physiological features, that closely
linked to melanoma, on top of the conventional diagnosis,
and we believe that it would ultimately help clinicians and
dermatologists for better diagnosis of melanoma.
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