
Two-dimensional sample entropy analysis of rat sural nerve aging

Luiz Eduardo Virgilio da Silva1, Antonio Carlos da Silva Senra Filho2,
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Abstract— Entropy analysis of images are usually performed
using Shannon entropy, which calculates the probability of
occurrency of each gray level on the image. However, not
only the pixel gray level but also the spatial distribution of
pixels might be important for image analysis. On the other
hand, sample entropy (SampEn) is an important tool for
estimation of irregularity in time series, which calculates the
probability of pattern occurrence within the series. Therefore,
we propose here an extension of SampEn to a two-dimensional
case, namely SampEn2D , as an entropy method for extracting
features from images that accounts for the spatial distribution
of pixels. SampEn2D was applied to histological segments of
sural nerve obtained from young (30 days) and elderly (720
days) rats. Morphometric indexes, such as the total number of
myelinated fibers and the average myelinated fibers area and
perimeter were also calculated. Results show that SampEn2D

can extract useful information from histological nerve images,
classifying elderly rat image as more regular than young rat.
As SampEn2D is related to irregularity/unpredictability, we
can conclude that the proposed method is complementary
to morphometric indexes. Further studies are being built to
validate SampEn2D .

I. INTRODUCTION

Entropy analysis is widely used in different fields of
science [1]. For time series analysis, approximate entropy
(ApEn) arose as an important method for use with short and
noisy time series [2]. Later on, sample entropy (SampEn)
method was proposed as an improvement of ApEn, which
was known to present two important bias [3]. Essentially,
both ApEn and SampEn are irregularity measurements. The
higher the time series regularity, the lower the entropy value
[4]. Regularity is close related to predictability. Regular time
series means there are no surprise within its values, their
values (or patterns) are highly predictable. On the other hand,
irregularity is related to unpredictability.

In image processing field, entropy analysis is usually
related to Shannon entropy computation. In this case, entropy
is estimated from individual pixels occurrency probabilities,
obtained from histogram. However, those probabilities do
not take into account the pixels spatial distribution, although
they might contain relevant information about the process
the image represents.

In this study we propose an extension of SampEn, namely
SampEn2D, as an entropy measurement for images that takes
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Fig. 1. Examples of rat sural nerve transverse section stained with 1%
toluidine blue. Figures (a) and (b) correspond to excerpts of rat aged 30
days and figures (c) and (d) to excerpts of rat aged 720 days.

into account the spatial information of pixels. Probabilities
are calculated following SampEn definitions, adapted for
the two-dimensional case. SampEn2D was then applied to
histological images of sural nerve obtained from a young
and an elderly rat.

II. MATERIALS AND METHODS

Int this study we used light microscopy images obtained
from two Wistar rats, aged 30 and 720 days. A semithin
transverse section of sural nerve was obtained for each rat
and stained with 1% toluidine blue, which is used to mark
lipids (myelin sheath). Images were optically magnified with
oil immersion lens (100 x), optovar (1.6 x) and camera (0.5
x), eventually using a computational magnification (8x) [5],
[6]. Fig. 1 shows two examples of the endoneural space of
each rat’s sural nerve (30 and 720 days).

We extracted image excerpts of 212 x 474 pixels from each
microscopy image, resulting in 12 segments for rat aged 30
days and 15 segments for rat aged 720 days.

In addition, several morphometric indexes were also cal-
culated for nerve images, namely the total number of myeli-
nated fibers, the average ratio between axonal diameter
(discarding myelin) and total fibre diameter (g ratio), the
average area and perimeter of myelinated fibers and the
percentage of occupancy of the myelinated fibers (percentage
of the total cross-sectional area of the endoneural space
occupied by the myelinated fibers) [5], [6].

A. Sample Entropy 2D (SampEn2D)

The extension of SampEn for a two-dimensional method
was developed so as to maintain the original purpose of
SampEn, i.e. an irregularity measure. In short, SampEn
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Fig. 2. Example of SampEn2D pattern comparison scheme. Considering
the first squared window of size 2 (m = 2), the algorithm search for similar
spatial patterns, where each corresponding pixels variation are limited to
r = 5 gray levels. The illustrated pattern at right represents a match for
both m = 2 (solid line) and m = 3 (dashed line). With images that are
represented by a more regular pattern, SampEn2D tend to show a lower
value compared to images with more irregular patterns.

quantifies the probability that m-length similar patterns will
still be similar for m+1. Two patterns are considered similar
if each corresponding point within the patterns are distant
at most r from each other [3], [4]. This probability can be
achieved by computing the total number of m and (m+ 1)-
length patterns matches. The ratio between those values gives
the conditional probability of finding (m+1)-length similar
patterns, given they are similar for m.

It is easy to note that periodic or very regular time series
tend to present the same number of similar patterns for both
m and m+1. The opposite occurs for unpredictable or very
irregular time series, where m-length similar patterns might
not remain similar for the next point. For more details, see
for example [7].

The two-dimensional SampEn method proposed here,
namely SampEn2D, defines two-dimensional m-length pat-
terns (squared windows) in place of one-dimensional patterns
used in SampEn. Likewise SampEn, each m-length pattern
is compared to all other m-length patterns within the image.
Pattern match is considered if every pixel within one pattern
differs no more than r from the corresponding pixel at the
comparing pattern. Fig. 2 shows one example of pattern
comparison step of SampEn2D.

Average occurrence probability is calculated for all m
and (m + 1)-length patterns (namely Um(r) and Um+(r),
respectively). Finally, SampEn2D is calculated as the loga-
rithmic ratio of Um(r) and Um+(r). The ratio between the
total number of m and (m+ 1)-pattern matches would give
the same results. However, this is not suitable here as the
number of matches found for images generally overflows the
computational memory. A formal definition of SampEn2D is
given below.

First, consider an arbitrary image u(i, j) with ni width
and nj height. Let xm(i, j) be the set of pixels of u ranging
columns j to j + m − 1 and lines i to i + m − 1, i.e.,
xm(i, j) = [u(i, j), u(i, j + 1), . . . , u(i, j + m − 1), u(i +
1, j), u(i + 1, j + 1), . . . , u(i + m − 1, j + m − 1)]. In a
few words, xm(i, j) is the m-length squared subset of pixels
with origin placed at (i, j). The total number of pixels in the
image is N = ni ∗ nj .

However, it is possible to form only Np = (ni − m) ∗
(nj − m) different squared patterns because the last m
columns and lines cannot be used as a pattern origin for
both m and (m + 1)-length patterns, following the same
unidimensional algorithm properties [3]. Two-dimensional
SampEn is defined by

SampEn2D(m, r,Np) = − ln
Um+1(r)

Um(r)
(1)

where

Um(r) =
1

Np

Np∑
i=1

Um
i (2)

Um
i =

[# of xm(i, j) | d[xm(i, j), xm(i1, j1)] ≤ r]
Np − 1

(3)

and

Um+1(r) =
1

Np

Np∑
i=1

Um+1
i (4)

Um+1
i =

[# of xm+1(i, j)|d[xm+1(i, j), xm+1(i1, j1)] ≤ r]
Np − 1

(5)
The distance function d is defined by

d[xm(i, j), xm(i1, j1)] = max
k,l

(|u(α, β)− u(α1, β1)|). (6)

where k = 1, . . . ,m, l = 1, . . .m, α = i + k − 1, α1 =
i1 + k− 1, β = j + l− 1 and β1 = j1 + l− 1. The distance
function is ideally the same of SampEn, here extended for
the two-dimensional case. In Equations (3) and (5), the origin
points (i, j) and (i1, j1) must be different to exclude self-
matches.

It is worth noting that, as the comparisons between pat-
terns in SampEn2D are made by each single corresponding
pixels and only for the original rotation, rotating variant
patterns will not match in SampEn2D. According to the
definition proposed here, SampEn2D assumes that such
patterns within images are not similar structures.

One-dimensional SampEn definition of m and r parame-
ters is a difficult task [8], [9]. For example, in analysis of
heart rate variability series, parameters common choices are
m = 2 and r = 0.15 or r = 0.20 percent of signals standard
deviation [2], [10], [3], [7]. For the new two-dimensional
approach, we expected those parameters to play similar roles.
However, changing m or r by the same amount in one and
two-dimensional methods might have different aftereffect,
once for time series patterns we have m comparison while
for images there are m2 comparisons.
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Fig. 3. SampEn2D values for the two sural nerve images (rats aged 30 and 720 days). For each plot, horizontal axis represents r parameter ranging from
0.06 to 0.40; (a) m = 1, (b) m = 2, (c) m = 3 and (d) m = 4. Error bars are standard errors within each segment, extracted from the same nerve image.

III. RESULTS AND DISCUSSION

Fig. 3 shows the results of SampEn2D for the two sural
nerve images. SampEn2D was calculated for r ranging from
0.06 to 0.40 (step 0.02) and m ranging from 1 to 4. It is
worth noting that r value is a percentage of image standard
deviation. Error bars are standard errors calculated from each
segment, extracted from the same nerve image.

SampEn2D curves show that elderly nerve images seems
to have a general pattern more regular or more predictable
compared to young one, reflected by its greater entropy
values. This is true for all sets of parameters calculated (m,r).
In general, greater SampEn2D differences between 30 and
720 days images are obtained for low values of r (0.06 to
0.20).

As SampEn and SampEn2D similarity tolerance increases
(r), more similar patterns are expected to be found. Usually,
it should lead to a decreasing of entropy value. However,
this tendency is not observed for the entire r range in Fig. 3.
As SampEn and SampEn2D can also be calculated as the
logarithmic ratio of m-length and (m + 1)-length pattern
matches, increasing r could lead to increasing matches of m-
length patterns but not of m+1. The ratio will increase in this
case, as so entropy. Moreover, this situation is more likely
to occur in SampEn2D than in SampEn, as the increment on
m in the former requests m+1 more pixels to be similar to
account for a match.

Table I show the values of morphometric indexes. The
total number of myelinated fibers (MF tot), the average ratio

TABLE I
MORPHOMETRIC INDEXES CALCULATED FOR 30 AND 720 DAYS NERVE

SECTION IMAGES. MF AREA AND MF PERIMETER UNITS ARE µm2 AND

µm, RESPECTIVELLY. MF OCCUP IS A PERCENTAGE OF TOTAL NERVE

AREA.

Age MF tot MF area MF perim g ratio MF occup
30 days 913 13.61 13.98 0.48 31.78
720 days 654 33.98 21.76 0.45 25.49

between axonal diameter (discarding myelin) and total fibre
diameter (g ratio), the average area (MF area) and perimeter
(MF perim) of myelinated fibers and the percentage of
occupancy of the myelinated fibers (MF occup) are show
for sural nerve images from rats aged 30 and 720 days.

One can note that virtually all morphometric indexes
seems to be different between 30 and 720 days images.
Aging usually causes axonal atrophy, which is reflected by a
decreasing in g index. Furthermore, the number of myeli-
nated fibers and the percentage occupancy of myelinated
fibers are also decreased in rat aged 720 days.

On the other hand, the average area and perimeter of
elderly rat is increased compared to young rat. Previous study
showed that there is a postnatal growth spurt between 30 and
90 days in rats [5]. Therefore, myelinated fiber in rat aged
30 days is not as developed as in adulthood.

Table I reveals the morphometric changes observed in
rat sural nerve with aging. Although SampEn2D does not
directly takes into account those metrics, the present study
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revels that regularity/predictability characteristics of those
images are also altered towards an irregularity loss with
aging. It is in accordance to physiological complexity theory,
which points to complexity loss with diseases and aging [11].

SampEn2D algorithm was implemented using Java version
7. In a desktop computer with Intel Xeon CPU E5405 2 Ghz
Quad Core and 3.9 Gb of RAM, SampEn2D computation
time for a sample image with size 300x300 was 95 seconds.

IV. CONCLUSIONS

In this study we propose an extesion of SampEn to a two-
dimensional analysis, namely SampEn2D, which extracts
information related to the repeatability of patterns within
images. Results show that SampEn2D might be useful for
histological image analysis. In addition to morphometric in-
dexes, which are generally used to assess histological images
of nerves in presence of pathologies and aging, irregularity
analysis produced by SampEn2D can also detect different
properties of those images, which may not be directly related
to morphometry.

Further studies have to be conducted to statistically vali-
date SampEn2D as well as to study its dependence on noise
and image size.
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