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Abstract— Single Particle Reconstruction (SPR) for Cryo-
genic Electron Microscopy (cryo-EM) aligns and averages the
images extracted from micrographs to improve the Signal-
to-Noise ratio (SNR). Outliers compromise the fidelity of
the averaging. We propose a robust cross-correlation-like w-
estimator for combating the effect of outliers on the average
images in cryo-EM. The estimator accounts for the natural
variation of signal contrast among the images and eliminates
the need for a threshold for outlier rejection. We show that the
influence function of our estimator is asymptotically bounded.
Evaluations of the estimator on simulated and real cryo-EM
images show good performance in the presence of outliers.

I. INTRODUCTION
Cryogenic Electron Microscopy (cryo-EM) is a method

for reconstructing the three dimensional (3D) structure of
macromolecular assemblies, referred to as particles. Single
Particle Reconstruction (SPR) methods determine the 3D
structure of a particle from its two dimensional (2D) pro-
jection images by iteratively 1) projecting an estimate of the
3D structure from different directions to obtain a set of 2D
templates, 2) aligning images to the most similar template,
3) calculating an average image from the aligned set, and
4) updating the 3D structure from the average images by
reconstruction algorithms.

The averaging step is critical to SPR; it is the step re-
sponsible for enhancing the Signal-to-Noise ratio (SNR) and
the resolution of the reconstruction. However, the projection
images obtained from electron micrographs during particle
picking often contain a large number of outliers, which
are due to particle fragments, contaminants, or pure noise
[1]. Outliers also arise during alignment when images are
aligned to incorrect templates. Outliers that survive particle
picking and alignment propagate through averaging to the
reconstruction algorithm and compromise the accuracy of
the reconstruction. We propose a robust averaging method
for cryo-EM to limit the effect of outliers.

Outlier rejection during particle picking is often realized
by thresholding the cross-correlation between the images
extracted from micrographs and one or more 2D templates
(e.g., averages of a few manually selected images) [2].
Images with correlation coefficient less than the threshold are
rejected as outliers. Although correlation has proven useful
for outlier detection in cryo-EM, no theoretical justification
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for the threshold or asymptotic robustness of these outlier
detection methods is available. This paper addresses these
shortcomings. Drawing on classical robust estimation theory
[3], we propose a cross-correlation-like “w-estimator” for
cryo-EM that calculates the average image by a weighted
sum of the observations. The weight function of this w-
estimator is an adaptation of cross-correlation to satisfy the
requirement of asymptotic robustness.

From a statistical point of view, the average image is an
estimate of the mean of an underlying distribution. Robust
estimation also aims to estimate the mean when the sample
contains outliers. The robustness of an estimator is quantified
by the influence function (IF). The IF of an estimator at
a point x measures the effect of an outlier at x on the
estimate [4]. A robust estimator has a bounded IF at those
x where outliers are expected. Experience with real cryo-
EM data suggests that outliers in cryo-EM images have the
following characteristics: 1) a finite component along the
average image, but 2) a low correlation with the average.
We focus on the boundedness of the influence function for
such outlier images. We show in this paper that our estimator
is Fisher consistent, has a bounded influence function, and
is robust to image contrast.

The rest of the paper is organized as follows: Section
II contains the image model, the proposed estimator, the
derivation of the influence function, and the analysis of
robustness based on the influence function. Section III shows
the results of our estimator for simulated and real cryo-EM
data and Section IV is the conclusion. All the proofs are
given in the appendix.

II. METHOD
A. Image Model

Assuming independent Gaussian white noise and taking
into account image contrast variation, we define the model
of an inlier image x as:

x = sθ + n (1)

where θ ∈ Rp is the projected particle signal, p is the
number of pixels in the image, n ∈ Rp is the Gaussian white
noise with zero mean and standard deviation σ and s is the
scale factor modeling image contrast; s is usually between
0.5 and 2. We assume that s has a uniform probability
density function (pdf) g(s|a, b) where a and b define the
range of variation. The pdf of the image can be derived by
marginalizing s:

g(x|θ) =

∫ b

a

g(x|θ, s)g(s|a, b)ds (2)
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where g(x|θ, s) is the pdf of a multivariate normal distribu-
tion N(sθ, σ2I) based on the inlier model in (1).

B. Proposed Estimator

We first give the definition of a w-estimate. A w-estimate
T is the following weighted average of observations xi, i =
1, 2, . . . , N :

T =

∑
xiw(xi,T)∑
w(xi,T)

(3)

where w(x,T) ≥ 0 is the weight function that depends on
both the observation x and the estimate T. The estimate is
a fixed point of the function defined in (3). The estimate is
calculated by the iteration: T(j+1) =

∑
xiw(xi,T(j))∑
w(xi,T(j))

until T(j)

converges [4]. The converged estimate is denoted as T̂.
The properties of the w-estimator depend on the weight

function. Our weight function is defined as:

w(x,θ) =
|xᵀθ|
‖x‖‖θ‖

exp
[
− β

∥∥x− (xᵀθ)

‖θ‖2 θ
∥∥2]

(4)

where β is a tuning parameter whose value is discussed later
in this paper.

The motivation for the two terms in the right hand side of
equation (4) is as follows: The term |xᵀθ|

‖x‖‖θ‖ is the absolute
value of the correlation coefficient of x and θ and is the
term of primary interest. It weighs an image according to
its correlation coefficient, and as mentioned before, such
weighting is known to be a useful image quality measure
for cryo-EM. The second term, i.e., exp

[
−β
∥∥x− (xᵀθ)

‖θ‖2 θ
∥∥2]

depends on the the component of x that is orthogonal to
θ. This term is necessary for the influence function to be
bounded.

Asymptotically T can be written as a statistical functional
of a multivariate distribution F :

T(F ) =

∫
xw(x,T(F ))dF (x)∫
w(x,T(F ))dF (x)

(5)

T(F ) is Fisher consistent if T(F ) = θ where dF (x) =
g(x|θ)dx (g(x|θ) is defined in (2)). It is easy to prove that
for the choice of w in (4), T is Fisher consistent in the
direction, i.e., T = αθ for some α. Although the norm of
T is not consistent, it is easy to show that the difference
between ‖T‖ and ‖θ‖ is negligible if ‖θ‖/σ > 10 and the
pdf g(x|θ) is symmetric about θ (the proof is omitted due
to space limit). These conditions are satisfied for most real
cryo-EM images, so we will regard T as Fisher consistent
for the remainder of the paper.

C. The Influence Function

The influence function of T at F is given as [4]

IF (x; T, F ) = lim
ε→0

T(Fε)− T(F )

ε
=

∂

∂ε
[T(Fε)]ε=0 (6)

where Fε = (1 − ε)F + ε∆x is a contaminated distribution
at the point x. IF quantifies asymptotically the influence of
the contamination on the estimate.

Proposition 1 For a Fisher consistent T defined in (5) with
a differentiable weight function w(x,θ), if ‖M(θ)‖ < 1
where ‖ · ‖ is the operator norm, then

IF (x; T, F ) = [I−M(θ)]−1w(x,θ)(x− θ)∫
w(y,θ)dF

(7)

where M(θ) =
∫

(y−θ) ∂
∂µ [w(y,µ)]θdF (y)∫
w(y,θ)dF (y)

.

The influence function IF (x; T, F ) measures the effect
of an outlier at point x on the estimate T. It is desirable
for the influence function to be bounded at x where x is an
outlier. As mentioned in the Introduction, outliers in cryo-EM
have very low correlation coefficients with the average image
and a finite component along the average. A simple way of
evaluating influence of such outliers is to consider the value
of the influence function as the correlation between x and
θ goes to zeros while the component of x along θ remains
finite. The next proposition states sufficient conditions for the
influence function of our w-estimator with weight function
to be bounded under these conditions.

Proposition 2 For T and w defined in (5) and (4), pdf
g(x|θ) defined in (2) and M(θ) defined in Proposition 1,
an upper bound of ‖M(θ)‖ is (for any positive u)

B(β, u, ‖θ‖, σ) =
Q1Γ(p−2

2 )

Q2γ(p−2
2 , (β̄ + 0.5)u2)

(8)

where x ∈ Rp, β̄ = βσ2,
γ is the lower incomplete gamma function, and
Q1 =

∫∫ |yj |
‖θ‖

e−β̄y
2
j (1+2β̄y1|yj |)g(y1|‖θ‖)dy1dyj ,

Q2 =
∫∫ |y1|e−(β̄σ2+0.5)

∑p
2 y

2
i√

y2
1+y2

j+u2
g(y1|‖θ‖)dy1dyj ,

where ‖θ‖ = ‖θ‖/σ, g(y|θ) =
∫ b
a
g(y|θ, s)g(s)1/pds and

g(y|θ, s) is the pdf of N(sθ, σ2).
If B(β, u, ‖θ‖, σ) < 1, then IF (x; T, F ) = 0 for outlier x
with |xᵀθ|

‖x‖‖θ‖ → 0 and a finite |x
ᵀθ|
‖θ‖ .

We can see from Proposition 2 that for a fixed u, by
choosing proper β, the influence function of the proposed
estimator goes to zero. This shows that outliers have no
effects on the estimation.

III. RESULTS

We present results of using our estimator on both simu-
lated and real cryo-EM images. We calculate the estimate T̂
from a set of aligned images by the iteration mentioned in
Section II-B and use the pixel-wise median of the images as
the initial estimate. The value of parameter β is determined
by calculating function B(β, u, ‖θ‖, σ) defined in Proposi-
tion 2. We find that when ‖θ‖ > 10σ, u = 11‖θ‖/σ and
p = 104, if β = 10−5/σ2, the condition B(β, u, ‖θ‖, σ) < 1
is satisfied. For both datasets below, we use β = 10−5/σ2.

A. Simulated Data

Simulated Cryo-EM images are generated by projecting
the atomic structure of the 50S ribosomal subunit from the
Protein Data Bank (PDB ID:1JJ2) with a simulated water
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shell [5]. Images are filtered by a contrast transfer function
(CTF) with defocus 1.3µm (CTF models the effect of the
microscope). We also apply a scale factor having uniform
distribution of U(0.5, 1.5). Gaussian white noise is added to
generate images with SNR around -10dB.

Inliers are images of the ribosome along a fixed projec-
tion direction. Outliers are from two categories: misaligned
images and pure noise. Misaligned images are images of
projection directions orthogonal to that of the inliers. We
use a uniform mixture of these two categories to generate
the outliers.

In this experiment, we use 60 inliers and 40 outliers.
|θ|/σ = 22 which satisfies the condition of |θ|/σ > 10.
The estimate T̂ and examples of an inlier and outliers of the
two categories are given in Fig. 1. Fig. 2 shows the weights
of the images at the last iteration. The weights exhibit the
contribution of each image to the final estimate T̂. The
weights associated with outliers are significantly smaller than
the weights associated with inliers. Thus the contribution of
outliers to the estimate of the mean is greatly diminished.
To compare the quality of our estimate with the classical
average, we calculate the mean square error (MSE) and SNR
of the estimates from 100 simulations. The results are shown
in Table I . The experiment of simulated data demonstrates
the robustness and the consistency of our estimator.

Fig. 1. From left to right (simulated): estimate T̂, an inlier, a misaligned
image and a pure noise image
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Fig. 2. Weights of simulated images

TABLE I
MEAN SQUARE ERROR (MSE) AND SIGNAL-TO-NOISE RATIO (SNR) OF

THE PROPOSED ESTIMATE AND CLASSICAL AVERAGE

Proposed estimate Classical average
MSE (×105) 1.36 2.25

SNR (dB) 6.7 5.1

B. Experimental Data

We applied our algorithm to the real 50S ribosomal
subunit cryo-EM images that are available from the National
Resource for Automated Molecular Microscopy [6]. The
images are aligned by the software package SPIDER [7]
and we use 60 aligned images along a projection direc-
tion. The noise standard deviation is estimated by σ =
median(|WHH(x)|)/0.6745, where WHH(x) is the wavelet
coefficients in the HH (high-high) subband of an image that
contains mostly white noise [8]. The estimated noise standard
deviation is σ ≈ 0.56. |θ| is approximated by the norm of
the estimate |T̂| and we have |θ|/σ ≈ 40. Fig. 3 shows the
weights of the images at the last iteration. Two images (4th
and 14th) have significant lower weights than the rest of the
images. Visualizing these two images (3rd and 4th images in
Fig. 4) suggests that they do not appear to contain the signal
of the projected structure. Fig.4 also shows the estimate T̂
and one image that has a high weight.
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w

Fig. 3. Weights of cryo-EM images

Fig. 4. From left to right (cryo-EM images): estimate T̂, an inlier, the 4th

image, the 14th image

IV. CONCLUSIONS

We proposed a method for robustly averaging aligned
images for cryo-EM Single Particle Reconstruction. We
introduce a novel w-estimator to replace the calculation of
average images by a weighted average. The weight function
is designed to be asympotically robust against outliers in
cryo-EM and insensitive to signal contrast variation among
the inliers. We are able to verify the consistency of our esti-
mator and derive its influence function. We proved that the
influence function is bounded. Experiments with simulated
data shows good performance on limiting the influence of
outlier images on the estimate. Application of our method
to real cryo-EM images demonstrates its ability to identify
possible outlier images.
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APPENDIX
A. Proof of Proposition 1

T defined in (5) at distribution Fε = (1−ε)F +ε∆x satisfies

[∫w(y,T(Fε))dFε]T(Fε) = ∫yw(y,T(Fε))dFε.

Taking the derivative with respect to ε and evaluate at ε = 0:[
∫w(y,θ)dF + ∫θ ∂

∂µ
[w(y,µ)]θdF

]∂T(Fε)

∂ε
|ε=0

+ θ∫w(y,θ)d[∆x − F ] = ∫y ∂

∂µ
[w(y,µ)]θ]dF

∂T(Fε)

∂ε
|ε=0

+ ∫ yw(y,θ)d[∆x − F ]

⇒
[
∫w(y,θ)dF−∫(y−θ) ∂

∂µ [w(y,µ)]θdF
]∂T(Fε)

∂ε
|ε=0

= w(x,θ)(x− θ)

Let M(θ) =

∫
(y− θ) ∂

∂µ [w(y,µ)]θdF∫
w(y,θ)dF

.

If ‖M(θ)‖ < 1 then I −M(θ) is invertible. We thus have

IF (x; T, F ) =
[
I−M(θ)

]−1w(x,θ)(x− θ)

∫ w(y,θ)dF
.

B. Proof of Proposition 2

Define a coordinate system where θ = [θ, . . . , 0]
ᵀ, y =

[y1, . . . , yp]
ᵀ. First normalize y by y/σ, θ by θ/σ and β

by βσ2. We prove that M(θ) is a diagonal matrix. Since the
denominator of M(θ) is a scalar, we only need to show that
the numerator is a diagonal matrix. Let aij denote the ijth

entry of the numerator of M(θ). We have ∂w
∂µ1
|θ = 0 and

∂w
∂µj
|θ = sign(y1)

yjexp{−β
∑p

2 y
2
i }

‖y‖‖θ‖ (1 + 2βy2
1), j 6= 1 (w(x,T)

is differentiable everywhere but one point where xᵀT = 0.
In practice we can always replace w around that point by
a smooth function. So we will regard w as differentiable
everywhere for this proof). By the independence of noise, we
can write g(x|θ) =

∏
1≤i≤p g(xi|θi). Then aij = 0, ∀i 6=

j and a11 = 0, i.e., M is diagonal. An upper bound of
ajj , j 6= 0 is∫

yj
∂w

∂µj
|θg(y|θ)dy

=

∫
sign(y1)

y2
j e
−β

∑p
2 y

2
i

|y||θ|
(1 + 2βσ2y2

1)g(y|θ)dy

6
∫∫
|yj |
|θ|

e−βy
2
j (1 + 2βy1|yj |)g(y1|θ)dy1dyj

·
∫ ∏

i 6=1,j

g(yi|θi)dyi

= C

∫∫
|yj |
|θ|

e−βy
2
j (1 + 2βy1|yj |)g(y1|θ)dy1dyj

·
Γ(p−2

2 )

2(β + 0.5)
p−2

2

where C is a constant that only depends on the dimension
of y and sign(y) is the sign function. A lower bound on the
denominator of M(θ) is

∫ w(y,θ)dF = ∫ |y1|
|y| e

−(β+0.5)
∑p

2 y
2
i g(y|θ)dy

= C

∫ ∞
0

[ ∫∫ |y1|e−(β+0.5)
∑p

2 y
2
i√

y2
1+y2

j+r2
g(y1|θ)dy1dyj

]
· rp−3e−(β+0.5)r2

dr

> C[

∫∫
|y1|e−(β+ 1

2
)
∑p

2 y
2
i√

y2
1+y2

j+u2
g(y1|θ)dy1dyj

]
·
∫ u

0

rp−3e−(β+0.5)r2

dr

= C[

∫∫
|y1|e−(β+0.5)

∑p
2 y

2
i√

y2
1+y2

j+u2
g(y1|θ)dy1dyj

]
·
γ(p−2

2 , (β + 0.5)u2)

2(β + 0.5)
p−2

2

where γ is the lower incomplete gamma function and u
can be any positive value. We thus have an upper bound
of the diagonal entries of M(θ) denoted as B(β, u, |θ|, σ).
If ‖M(θ)‖ 6 B(β, u, |θ|, σ) < 1, from Proposition 1 the
influence function of our estimator is

IF (x; T, F ) =
[
I−M(θ)

]−1w(x,θ)(x− θ)

∫ w(y,θ)dF
.

‖IF (x; T, F )‖ 6 ‖w(x,θ)(x− θ)‖K(θ)

where K(θ) , ‖[I −M(θ)]−1/
∫
w(y,θ)dF‖ is a constant

for a fixed θ. We show that IF (x; T, F ) = 0, when |xᵀθ|
‖x‖‖θ‖ →

0 and |x
ᵀθ|
‖θ‖ is finite by showing that ‖w(x,θ)(x − θ)‖ →

0. Let x1 denote the component of x along θ and x2 the
component orthogonal to θ. Let φ = |x1|

|x| and x1 be finite.
We thus have

lim
φ→0
‖w(x,θ)(x− θ)‖ = lim

φ→0

|x1|e−βx
2
2√

x2
1+x2

2

√
(x1 − θ)2 + x2

2

= lim
φ→0

φe−β(1−φ2)x2
1/φ

2
√
φ2(x1 − θ)2 + (1− φ2)x2

2/φ
2

= lim
φ→0

e−βx
2
1/φ

2

|x1| = 0.
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