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Abstract— An interactive navigation system for virtual 

bronchoscopy is presented, which is based solely on GPU based 

high performance multi-histogram volume rendering. 

I. INTRODUCTION 

Virtual endoscopy has become an increasingly important 
tool for training, diagnosis, pre-operative planning and intra-
procedural image guidance. In virtual bronchoscopy 
navigation, real-time video images of the bronchoscope are 
compared to the virtual images generated from a diagnostic 
CT volume to locate the bronchoscope relative to the 
patient’s airways and pre-procedural CT. Current clinical 
methods for registration used in bronchoscopy procedures 
include video or image based as well as electromagnetic 
tracking based solutions [1].  Various registration algorithms 
have been developed to automatically register real and CT-
derived virtual bronchoscopy images [2,3].  These algorithms 
require rendering virtual bronchoscopy images at different 
locations and viewing angles to find the best match of the 
real image.  Since the registration is carried out during the 
clinical procedure, fast virtual bronchoscopy rendering is 
highly desirable for less latency and more real time 
procedural adjustment.  Current endoscopy navigation 
systems either strive for interactive rendering of an iso-
surface from the polygonal representations, or high-quality 
volume rendering that has to be generated from a 3D image.  
While surface-based virtual bronchoscopy is very fast, it 
relies on an accurate segmentation of the airways. However, 
semi or automatic airway segmentations are not reliable when 
the airways are small or the resolution of the diagnostic CT 
image is low [4, 5].  As an alternative, volume rendering can 
be used when airway segmentation is not accurate. Even if 
volume rendering is ambiguous in small airways due to 
volume averaging, the clinician may use his or her 
knowledge to effectively locate the position of the 
bronchoscope. The registration algorithms may still find the 
best match between the real and virtual bronchoscopy 
images.   

Intensive research has been conducted in developing fast 
volume rendering based endoscopy navigation.   Wan et al. 
[6] proposed a fast direct volume rendering technique that 
exploits distance information stored in a potential field of a 
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camera control model, and is parallelized on a 
multiprocessor.  The proposed method is CPU based, and the 
navigation system requires a high-end workstation to run, 
such as the SGI power challenge with 16 processors.   Kruger 
et al. [7] proposed a GPU raycasting method that combines 
volume rendering with iso-surface rendering.  On the pixel 
shader, a first pass performs single pass ray traversal and 
early ray termination on the surface to gather the depth and 
density info for each pixel.  Then a second pass performs 
composition and shading to get the final image.  Yuan [8] 
proposed a fast GPU raycasting algorithm to improve image 
quality.  A linear interpolation is used to estimate the 
intersection between a ray and iso-surfaces in order to reduce 
resampling artifacts. Diepenbrock et al. [9] proposed a GPU 
based volume raycaster that generates two proxy geometries, 
a cube one for rendering, and a sphere one to map the user’s 
input to camera movement.  An image analyzer overlays the 
two for final rendering.  Limited research has been dedicated 
to support pure volume rendering based navigation without 
3D surface rendering.  Wan’s work is pure volume rendering, 
however, it is CPU based.   All the above GPU based 
navigation systems constrain with 3D surface rendering to 
achieve high rendering quality.   

Debate exists regarding the merits of surface rendering 
versus volume rendering [10, 11]. One advantage of iso-
surface based volume rendering is the realistic lighting and 
shading effects, which enhance the perception of spatial 
relations of anatomic structure.  One major limitation of this 
approach is segmentation. For example, in the context of 
virtual bronchoscopy, small airways are extremely easy to 
miss with semi-manual based human segmentation.   Those 
small branches might be the diagnosed as highly suspicious 
lesion.  In the pure volume rendering based navigation 
environment, an appropriate adjusted transfer function is 
desired for viewing the fine details of the small airways. 
Though interactive direct volume representations would be 
highly desirable, no system has yet been presented that is 
capable of delivering sufficient quality with a truly 
interactive frame rate [12]. 

To overcome the inherent problems of the above 
approaches in a pure volumetric rendering context, we 
developed a bronchoscopy navigation system that satisfies 
the following requirements: 1) Pure volumetric view without 
any 3D iso-surface rendering to minimize the human based 
segmentation errors; 2) Intuitive mouse centric navigation 
control that is capable of steering the surrounding anatomic 
structure from the viewpoint; 3) Path planning with automatic 
fly through; 4) Achieve high rendering quality with 
interactive frame rate.  With those simple requirements in 
mind, we developed a prototypical GPU based multi-
histogram volume navigation system.  
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The proposed GPU navigation system is built on top of 
the MIPAV [13] visualization framework.  The framework 
utilizes the WildMagic [14] game engine to handle the 
rendering.   In general, 3D camera control in computer games 
has only limited use in the area of volume rendering [9] 
because the game engine based rendering pipeline leads to a 
substantial problem with volume navigation on the GPU.   
We developed a work around method to solve the problem, 
which is presented as the following: 1) overview of the GPU 
based rendering architecture; 2) explanation of the bottleneck 
GPU rendering constraint in the context of volume 
navigation; 3)the work around method;4) basic functionalities 
of a prototype bronchoscopy navigation system. 

II. METHODS 

A. Old GPU-based Multi-histogram Rendering Framework 

 The previous published paper [14] introduced MIPAV 
visualization framework on top of the WildMagic game 
engine.  WildMagic is a C++ game engine [15] that provides 
the low-level geometry routines and complete high-level 
scene graph management for game applications.   We ported 
the WildMagic library to Java specifically for the shader-
based rendering pipeline and shader-effects library.  
WildMagic is optimized for fast and efficient use of GPU 
memory by sharing texture and shader data.   

 

Figure 1. MIPAV visualization framework layers 

Figure 1 depicts the layered MIPAV visualization 
framework.  The WildMagic library is layered between 
MIPAV and the Jogl library to implement ray-cast based 
volume rendering. GPU based GLSL shaders produce very 
efficient rendering results through the use of extensive 
graphics hardware optimization.   

In later work [16], we integrated the GPU-based multi-
histogram rendering into the MIPAV visualization 
framework.  The multi-histogram rendering framework 
proposed by Kniss et al. [17] gives the volumetric data the 
3D impression of overlaid multiple shapes (iso-surfaces).  
Multi-histogram rendering gives greater emphasis to 
boundary visualization than does the traditional one 
dimensional transfer function based volume rendering.    
Figure 2 depicts the rendering pipeline.   

 

Figure 2. Old GPU based multi-histogram rendering pipeline 

In the preprocessing stage, the gradient magnitude, 
Laplacian volume, and the volume normal are calculated by 
OpenCL routines on the GPU.   The WildMagic library 
renders the 3D volume proxy geometry to sample the volume 
data.  Each time the proxy geometry is rendered, the pixel 
shader calculates the current location in the volume to 
sample, renders the volume data with gradient magnitude and 
Laplacian values, and calculates the output color and opacity. 
If more than one 2D multi-histogram widget is applied, the 
values are combined before being written to the framebuffer.   
Each rendering pass is blended with alpha blending in the 
framebuffer.   

The proxy geometry is rendered as a color cube, which is 
sized to fit the volume data.  At the start of rendering, the 
back-facing sides of the cube are rendered, where back face 
color is determined by the x, y, z location on the rendered 
face.   This produces a 2D texture as seen in Figure 2.  Next 
the proxy geometry is rendered again, this time rendering the 
front-facing sides of the cube.   When the front faces are 
rendered, the 2D back-facing texture is passed to the pixel 
shader program.  The pixel shader program uses the positions 
on the front-face of the cube and the positions of the back-
side of the cube, which it reads from the 2D texture, to 
calculate a view-direction along which to sample the volume 
data.   During each pass the pixel shader reads the volume 
data, gradient magnitude, Laplacian, and normal map from 
the 3D textures, and computes the color and opacity from the 
multi-histogram transfer function.  Blinn-Phong illuminations 
model is used to compute the shading at each voxel.  The 
pixel shader program calculates a single location along the 
ray to render, and multiple rendering passes are used to 
generate the final image in the framebuffer.   Thus, ray-
casting is realized in sense of multi-pass, which utilizes the 
parallel GPU processing power of the modern graphics 
hardware.         

B. Multi-histogram framework rendering constraint in the 

context of navigation 

 Due to historic reasons, the MIPAV visualization 
framework relies heavily on the WildMagic game engine 
architecture to handle the GPU based volume rendering.  The 
proxy geometry, the color cube, is the key to rendering the 
volume.  
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One typical step with the traditional WildMagic game 
engine rendering pipeline is described in Figure 3.   

 

Figure 3. General game engine rendering pipeline view frustum culling   

From the model space, the image scene graph tree contains 
all the 3D geometry objects in the game scene.  View frustum 
culling goes through each 3D geometry surface, eliminating 
portions of the object, possibly the entire geometry object 
that is outside the view frustum.  Then the remaining 
geometry figures in the image scene graph are projected into 
the homogeneous canonical view volume (CVV) for 
rasterizing.  Each geometry object is attached with its own 
shader for GPU surface rendering.   To navigate into the 
game scene, the camera simply moves around inside the 
game environment, viewing the closest 3D geometry figures 
that are visible inside the view frustum.   Frustum culling is 
performed at each frame of the rendering loop.    One point 
needs to mention is the clipping.  Clipping against the view 
frustum tests the intersection of the front-facing object’s 
triangle meshes with the view frustum clipping planes.   The 
portions outside will be clipped away.   The remaining parts 
will regenerate the triangle meshes for the new 3D objects.   
In the context of game based navigation, clipping against the 
3D geometry objects turns out to be unnecessary since the 
game player never needs to navigate inside the 3D figures. 
Occasionally, a hollow 3D surface shows up when the player 
moves the camera into the 3D object.  Clipping against the 
3D figure to regenerate the triangle meshes turns out to be the 
performance overhead in the gaming environment.   
Therefore, culling without clipping is a general operation in 
the game engine architecture.             

We build the multi-histogram rendering framework based 
on top of the WildMagic game engine.  The culling without 
clipping scenario introduces a substantial design pitfall in the 
context of volume navigation.   Figure 4 illustrates the 
problem.   

   

Figure 4. View frustum culling in the context of navigation 

In the context of volume navigation, the proxy geometry is 
the only geometry object under the image scene graph tree. 
From the old multi-histogram rendering framework, 
rendering works smoothly when the camera is far from the 
volume proxy geometry since the geometry resides entirely 
inside the view frustum.   To navigate into the 3D volume, 
we move the camera close to the volume, as shown in Figure 
4 b,c.   The volume data is rendered with a pixel shader on 
the GPU.  The shader is activated by rendering the volume 
proxy geometry.  One problem with this technique is that the 
WildMagic library culls off the bounding-volume proxy 
geometry cube with the view-frustum near plane before 
rasterizing.  The front-face and back-face of the proxy 

geometry are no longer rendered on the GPU, and therefore 
the fragment shader is no longer activated.   This causes the 
whole volume rendering to disappear as the user tries to 
navigate inside or zoom into the volume.  This pitfall from 
the game engine architecture design becomes the bottleneck 
in the context of volume navigation with the GPU based 
rendering framework.           

C. Work around method in the context of navigation 

One work around method we developed is to 
automatically detect clipping of the volume proxy geometry 
by the view frustum near plane as the camera moves into the 
volume.   When clipping is detected, the algorithm generates 
a new triangle mesh by intersecting the near plane with the 
original proxy bounding cube.  The newly generated triangle 
mesh serves as the new volume proxy geometry to pass down 
to the shader for rasterizing.  The resulting effect is an 
appearance of navigating into the volume.  Before rasterizing, 
the plane-cube intersection and re-meshing are computed for 
each frame inside the CPU based rendering loop.  We follow 
the references [18, 19] to implement the algorithm.  Figure 5 
demonstrates the possible clipping configurations of the near-
plane and the proxy geometry cube.   

 

Figure 5. Plane-cube clipping configurations 

The proxy cube and the view frustum intersection test is the 
key to solving the clipping problem.   As illustrated in Figure 
5, the intersection between a cube and the near plane 
generates an irregular polyhedron, which contains at most 6 
vertices.  The intersection test algorithm is outlined as 
follows.  When the near plane intersects an edge of the cube, 
the plane is given in Hessian normal form, 

                                  (1)  

where   is the unit normal vector of the plane and   the 
length of the normal vector.   An edge      between two 

vertices    and    of the cube can be described by the straight 

line, 

                      )     with                (2)  

The intersection point between the near plane and the 
straight line spanned by edge      is calculated as,  

           
        

            
               (3) 

The near plane intersects the edge of cube when    [   ], 
otherwise there is no intersection.  A key point in performing 
the plane-edge intersection calculation is to maintain a 
clockwise or counter-clockwise ordering of the intersection 
points such that the final result forms a valid polygon.  Figure 
6 shows the remapping of the points on the cube so that the 
nearest point is   , and is on the cube top-face.   This corner 
is clipped by the view frustum and will serve as the starting 
corner in creating the new mesh surface.   Vertex    is the 
furthest vertex lying on the opposite corner of the cube back-
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face.    There are three independent paths from    to    as 
marked in Figure 6a by the solid lines with different shaded 
gray colors.  Each path consists of a sequence of three edges 
{        },  such as,                   and    
      for the light gray path.   Any viewport-aligned clipping 
plane that intersects the cube will have exactly one unique 
intersection point along each of the three paths.   

 

 Figure 6. Remapping of points on the proxy cube 

If the intersection polygon has only three vertices, there are 
exactly three intersections points with the three paths.  We 
can compute three intersection points    by checking 
intersections with a sequence of edges, respectively, as 
shown in Figure 6b.  
           Intersecting with      or       or       

     Intersecting with      or       or       
     Intersecting with      or       or       
In case that the intersection polygon has more than three 

vertices, we need to insert new points at the dotted lines.  For 
example, insert a new point    at the light gray dotted line 
    .  As a consequence, there must be two consecutive 
edges linking to   , and the two points reside either on the 
solid light gray path or the solid mid gray path as shown in 
Figure 6 c,d.    If the intersection with the dotted line doesn’t 
exist, we just set the point to   , which is on the light gray 
path.  The intersection points with the dotted lines are 
expressed as: 

      = Intersection with     , otherwise    

      = Intersection with     , otherwise    

      = Intersection with     , otherwise    
Following the above idea, we find all the six intersection 

points of the near plane with the proxy bounding cube in a 
sequence that forms a valid polygon while simultaneously re-
meshing the clipping plane.    The newly generated proxy 
geometry is passed down to the shader for GPU based 
rendering.   Clipping the proxy cube with the near plane 
solves the problem of the volume navigation with the general 
game engine based rendering pipeline.   After applying the 
clipping algorithm, users are able to navigate into the 
volume.     

D. Prototype Virtual Bronchoscopy Navigation 

By solving the clipping problem with the general game 
engine rendering architecture, we build a prototype volume 
navigation system for the virtual bronchoscopy based on the 
GPU enhanced multi-histogram rendering framework.   
Multi-histogram is a very effective way to visualize material 

boundaries from the complicated anatomy structure without 
rendering the 3D surfaces.  It avoids the tedious semi-
manual human segmentation with the large dataset, i.e. 
512x512x256.  Our motivation for the multi-histogram is to 
view the tiny branch structures along the bronchial airway 
during the navigation.   Those small airways can easily be 
neglected with the human based segmentation 

To unleash the full potential of the volume navigation, 
we implement two control modes: one with mouse centric 
control to steer and fly into the volume; the other is the path 
planning based automatic fly-thru.   Users can easily switch 
between the two modes with a single button click.    

 In the mode of mouse centric control, press and hold 
down the left mouse button with the control key to pick a 
target point as the flying direction.  Then rotate the mouse 
wheel forward once to fly toward the target direction or 
rotate it backward once to fly in the opposite direction.   Fly 
through is implemented with Java thread control.  The flying 
motion continues until the user presses the mouse again to 
stop at the current location.   This is necessary when the user 
needs to switch between branches during navigation.  Flying 
is realized by moving the camera at a constant speed.   
Features with the camera centric navigation metaphor are 
also implemented.   The following key and mouse button 
combinations affect the view orientation and direction: 1) 
Ctrl + right mouse button - Counterclockwise roll rotation; 
2) Alt + right mouse button - Clockwise roll rotation;  3) 
Shift + right mouse drag – Move the camera location 
horizontally or vertically, independent of the volume; 4) 
Shift + left mouse drag – Yaw, pitch rotation around the 
volume with camera centric location.  The camera centric 
steering features are convenient for observing the small 
airways in bronchoscopy.  Figure 7 shows a mouse centric 
control view.  The upper panel shows the virtual 
bronchoscopy volumetric view.  The lower three panel 
cross-hairs show the current virtual camera location.   

 
Figure 7.  Mouse centric control view 

   In the mode of planning automatic based fly-thru, the 
user selects the annotation points to create the tracking path.   
A point of interest is captured by clicking the left mouse 
button on one of the bottom three planar panels while 
holding down the shift key.   After a new point has been 
captured, it is added along with the current location to a list 
of other captured points, and then a small green sphere is 
rendered as the selected point of interest.   When user clicks 
the generate path button, a B-Spline smoothed path is 
created.   Figure 8 shows a tracking path in red color with 
the tri-planar view.   Basically, the user creates a tracking 
path starting from the lesion region as the initial anchor 
point, and traces back to the entry point of the bronchus 
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structure.   To fly-thru, the user simply rotates the mouse 
wheel forward once to fly along the B-Spline path, or 
backward once to fly back.  Figure 9 shows the volumetric 
view of path planning fly-thru, and the corresponding path 
hidden behind the volume scene.   

 
Figure 8. Path planning 

 
 

  
    Figure 9.  Path planning mode fly-thru 

III. RESULT 

To conduct the performance measure, we evaluate the 
frame per second (fps) with the path planning automatic fly-
thru mode.   Frames rates were captured during the fly-thru 
with fine tuning the sampling rate.   Measurements were 
conducted on a general desktop PC equipped with 8 GB 
RAM and an Nvidia GeForce GTX 550 Ti card with 1.0 GB 
texture memory.   Table 1 shows the figures with different 
CT datasets.  The GPU base multi-histogram volume 
navigation can achieve an acceptable interactive frame rate 
with smoother visual rendering quality.    

 
 Size FPS 

CTlung 512x512x73 28 

Bronchus 512x512x256 20 

Lung(female) 512x512x313 15 

      Table 1. Performance (fps) 

IV. CONCLUSION 

 In virtual bronchoscopy simulation, it is important to 
develop a navigation method that enables users to control the 
position and orientation of virtual camera easily and 
intuitively.   We propose a prototype navigation system that 
utilizes the GPU based multi-histogram to render a clear 
bronchial airway in a pure volumetric context, without any 
3D surface rendering involved.  The proposed system 
overcomes the GPU volume navigation constraint [9] 
imposed by the traditional game engine based medical 
simulation architecture.  It can generate a trajectory path 
with a simple path planning tool, allowing users to fly-thru 
the airway easily and efficiently.   The system also provides 
a mouse centric control to steer the camera around the 
volume.  In addition, with the multi-histogram widget 
control it is intuitively easy to extract a bronchial airway 
view.  It avoids a tedious step of semi-manual bronchial 
airway segmentation and minimizes the human based 

segmentation errors in the small airways structure.  The 
proposed navigation system runs on general PC with a low 
end 3D graphics card, but can still achieve a relatively high 
rendering quality with interactive frame rate.  The developed 
tool can be adapted for different non-invasive virtual 
endoscopy simulations, such as colon, bronchi, and blood 
vessels.  We develop the system as a proof of concept tool 
for future simulation of minimally invasive image guided 
procedures.   
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