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Abstract— This paper presents a state-space (subspace)
method for identification of parallel-cascade joint stiffness from
short segments of data. It provides unbiased estimates of
stiffness by accounting for the contributions of initial conditions
of each segment. The method is important in situations where
it is not possible to acquire a long stationary data due to
switching or time-varying behavior. The power of the method
was demonstrated by using it to efficiently characterize ankle
joint stiffness through the joint’s range of motion.

I. INTRODUCTION

Joint stiffness defines the dynamic relation between the
position of a joint and the torque acting about it [1]. Joint
stiffness plays a critical role in control of posture and
locomotion since it determines the load that the central
nervous system must control. Consequently, its identification
is important and accurate methods to estimate stiffness are
required.

Joint stiffness at the ankle has a parallel-cascade (PC)
structure consisting of two parallel pathways: (i) intrinsic
stiffness which is due to mechanical properties of the joint,
active muscles and passive tissues, and (ii) reflex stiffness
arising from changes in muscle activation due to stretch
reflex feedback [1].

The key assumption for identification methods is that the
system is time-invariant (TI), i.e., the underlying dynamics
are the same throughout the data set used for identification.
However, this is often not the case for biomedical systems.
For example, joint stiffness will change continuously with
postural sway during upright stance, or with muscle fatigue
[2], [3].

It may be possible to obtain many short TI data segments.
For example, it is difficult to estimate joint stiffness at high
activation levels because muscle fatigue occurs rapidly. How-
ever, subjects can perform multiple, short, large contractions
without muscle fatigue. Similarly, it may be possible to
segment non-stationary data from stance into a number of
shorter stationary segments. Thus, it would be useful to have
a method identify the system dynamics from short segments
of stationary data.

Both non-parametric and parametric methods have been
developed to identify joint stiffness from a single long data
record. We recently developed a parametric subspace method
that identifies a state-space representation of joint stiffness
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Fig. 1. Parallel-cascade model of ankle joint stiffness. Input is position
(pos(k)) and output is the sum of intrinsic, reflex and voluntary torques
plus measurement noise.
[4]. Subspace methods are advantageous since they require
little a priori information, and are more robust than other
methods.

This paper extends our previous method [4] to work
with short segments. The primary difficulty in doing so
was related to initial conditions. The contribution of initial
conditions decays at a rate determined by the system time
constants. It is a common practice in identification of biolog-
ical systems to ignore this transient and consider the system
to be in steady-state. However, when only short segments of
data are available, initial conditions must be considered and
estimated, otherwise they will bias the estimates [5]. Con-
sequently, we modified our state-space method to estimate
the initial conditions for each segment and account for their
contribution.

Section II presents the theory underlying the method.
Section III shows experimental results for a time-varying
task where ankle joint is moved passively through its range
of motion. Section IV provides concluding remarks and a
short discussion.

II. THEORY
Fig. 1 shows the PC structure. Intrinsic stiffness relates

intrinsic torque (tqI(k)) to angular joint position (pos(k)),
velocity (vel(k)), and acceleration (acc(k)) by elastic (K),
viscous (B), and inertia (I) parameters. Reflex stiffness has a
block oriented nonlinear structure comprising a differentiator,
a delay and a Hammerstein structure (static nonlinearity
followed by a linear system).

Assume that p segments of input position and noisy output
torque are available where the i-th segment has N i data
points, i ∈ {1, · · · , p}.

posi =
[
posi(0) · · · posi(N i − 1)

]T
t̃q
i

=
[
t̃q
i
(0) · · · t̃qi(N i − 1))

]T
(1)

The superscript (·)i indicates the i-th segment data .
A state-space model of the PC structure for the i-th

segment is [4]:{
xi(k + 1) = Axi(k) +BΩU

i(k)

t̃qi(k) = Cxi(k) +DΩU
i(k) + vi(k)

(2)
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where the constructed input U i(k) is:

U i(k) =
[
U iR(k) U

i
I(k)

]
U iR(k) ,

[
g1(dvel

i(k)) · · · gn(dvel
i(k))

]
U iI(k) ,

[
posi(k) veli(k) acci(k)

]
(3)

where veli(k) and acci(k) are the velocity and acceleration
computed from (posi(k)). vi(k) is an arbitrary colored
output noise. A and C are the state-space matrices of the
linear element in the reflex Hammerstein pathway. The static
nonlinear element in the reflex pathway is approximated by
a basis expansion g(·) of the delayed velocity (dvel(k))
with order n. Thus, the output of the nonlinear element is
wi(k) =

∑n
i=1 ωigi(dvel

i(k)). The state-space matrices BΩ

and DΩ are:

BΩ =

 b1ω1 · · · b1ωn 0 0 0
...

...
...

...
...

bmω1 · · · bmωn 0 0 0


DΩ =

[
dω1 · · · dωn K B I

]
(4)

where B = [b1, · · · , bm]
T and D = [d] are the state-

space matrices of the linear element of the reflex stiffness
pathway. Ω = [ω1, · · · , ωn]

T contains the coefficients of the
nonlinear expansion and {K,B, I} are the intrinsic pathway
parameters [4].

Use the extended Hankel matrix to merge data from
all segments. The extended Hankel matrix Oi,j,t1,··· ,tp is
defined by concatenating the Hankel matrices of all segments
{1, · · · , p}:

Oi,j,t1,··· ,tp =
[
Oi,j,t1 , · · · , Oi,j,tp

]
(5)

where ti spans all of the recorded data ti = N i−2h+2 and
Oi,j,j is the Hankel matrix of the discrete signal o(k) [6]:

Oi,j,j =


o(i) · · · o(i+ k − 1)

...
. . .

...

o(i+ j − 1)
... o(i+ j + k − 2)

 (6)

Use Multivariable Output Error State-sPace (MOESP) [6]
with past input as instrumental variable (IV) as the first
step to estimate A,C. Apply it to the input (Uh,h,t1,··· ,tp ),
past input (U0,h,t1,··· ,tp ) and noisy output (T̃Qh,h,t1,··· ,tp )
extended Hankel matrices. The IV U0,h,t1,··· ,tp is not cor-
related with noise Vh,h,t1,··· ,tp but is correlated with output
T̃Qh,h,t1,··· ,tp . Thus, unbiased estimates are guaranteed in
the presence of an arbitrarily colored noise (v(k)) [6].

Use the estimates of A and C to construct the data equa-
tion needed to estimate the remaining parameters. Express
the output of the i-th segment as [6]:

t̃q
i
(k) =

[
k−1∑
τ=0

U i
T

(τ)⊗ CAk−1−τ

]
vec(BΩ)

+ U i
T

(k)vec(DΩ) + CAkxi(0) + vi(k) (7)

where vec(·) generates a vector by stacking the columns of
the matrix (·):

vec(BΩ) = [b1ω1, · · · , bmω1, · · · , b1ωn, · · · , bmωn]
T

vec(DΩ) = [d1ω1 · · · dωn]
T (8)

Replace A and C in (7) with their estimates Â and Ĉ
and define the matrix Γ = [Γ1, · · · ,Γp], the regressor for
estimating the initial conditions:

Γ1 =



Ĉ
...

ĈÂt
1−1

0
...
0


, · · · ,Γp =



0
...
0

Ĉ
...

ĈÂt
p−1


(9)

Define Λ, the regressor for estimating the reflex parameters
from (7):

Λ =



0

U1
R(0)Ĉ

...∑N1−2
τ=0 U1

R(τ)ĈÂN
1−2−τ

...
0

UpR(0)Ĉ
...∑Np−2

τ=0 UpR(τ)ĈÂN
p−2−τ



(10)

Concatenate the segments to form:

UI = [U1
I (0) · · ·U1

I (N1 − 1) · · ·UpI (0) · · ·UpI (Np − 1)]

˜TQ = [t̃q
1
(0) · · · t̃q1

(N1 − 1) · · · t̃qp(0) · · · t̃qp(Np − 1)]

Now, express the data equation (7) in matrix form for all
segments by separating the parameters of intrinsic and reflex
pathways:

˜TQ = [ΦRΦI ]

[
θR
θI

]
(11)

where the reflex regressor ΦR is constructed from Γ and Λ:

ΦR = [Γ1 Γ2 · · · Γp Λ] (12)

and θR contains the reflex parameters:

θR =[ ζ1ω1 · · · ζpω1 b1ω1 · · · bmω1 · · · b1ωn

· · · bmωn dω1 · · · dωn ]T (13)

where ζi is the scaled version of the initial conditions:

ζi =
xi(0)

ω1
(14)

The intrinsic regressor ΦI is:

ΦI = UTI (15)

and θI contains the intrinsic unknown parameters:

θI = [K B I]T (16)
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Fig. 2. Typical data recorded in an experiment (A) joint angular position;
(B) joint torque.

The algorithm for identification of θI and θR from (11) is
identical to [4]. Thus, proper orthogonal projection on the
column space of reflex and intrinsic regressor is used to
eliminate the effects of noise and reflex torques. This gives an
estimate of the intrinsic parameter set θI . Then, an iterative
method is used to estimate the static nonlinearity Ω, linear
state-space parameters {b1, · · · , bm, d}, and initial condition
set {ζ1, · · · , ζp}.

III. EXPERIMENTAL RESULTS

The application of the subspace short segment identifica-
tion method was demonstrated with data from an experiment
in which the ankle was moved passively through its range
of motion.

A. Methods

We recruited five healthy subject who gave informed
consent to the experimental procedures, which had been
reviewed and approved by McGill University Institutional
Review Board. The experimental apparatus was similar to
that described in [7]. The subject’s left foot was attached
to a hydraulic actuator using a custom made low-inertia
boot. The actuator was operated as a position-servo mode
that controlled ankle angular position. The neutral position
(90 degrees angle between shank and foot) was taken as
0rad, a plantarflexing movement considered as negative and a
dorsiflexing movement considered as positive. Subjects were
instructed to remain relaxed and not to contract their ankle
muscles voluntarily.

The angular position command sent to the actuator was
the sum of an operating point trajectory (large displacement)
and small perturbations. The operating point trajectory was
a piecewise constant signal that spanned the subject’s range
of motion. This trajectory was generated by switching ran-
domly between 10 levels spanning the range of motion at
time intervals drawn from a uniform random variable with
minimum and maximum of 4 and 7s. This was low-pass
filtered with a second-order Butterworth filter with a cut-off
of 2.5Hz to avoid sharp transients.

The position operating point trajectory had a very low
frequency content and therefore was not suitable for iden-
tification. Consequently, a pseudo random arbitrary level
distribution sequence (PRALDS) perturbation was added to
the actuator input [4]. The switching rate of PRALDS was
a uniform random variable with minimum and maximum of
250 and 350ms and its peak amplitude was 0.04rad. Fig. 2A
shows a segment of the position recorded from a typical trial.
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Fig. 3. Intrinsic stiffness parameters as a function of joint position: (A)
elastic (K); (B) viscous (B); (C) inertia (I).

Angular joint position was measured using a precision
potentiometer and the torque about the ankle using a torque
transducer. 10 trials of 120s were recorded. Data were
sampled at 1kHz and then decimated to 100Hz for analysis.
EMG signals from triceps surae and tibialis anterior muscles
were examined to confirm that subjects had no voluntary
activity. The output torque (Fig. 2B) characteristics changed
considerably with the position operating point (Fig. 2A); at a
dorsiflexed position (+0.05), reflex activity was present and
large; while at a more plantarfelxed position (-0.2rad), reflex
activity was small altogether absent.

B. Results

Results are shown for a typical subject. The other four
subjects behaved similarly.

Multiple stationary data segments were assembled from
data recorded at each position level. This was achieved by
segmenting the data according to the position operating point
level. The first 1.5s of each segment was removed to avoid
any transition effects (nonstationary condition). This yielded
an average of 22 segments for each level with minimum and
maximum of 18 and 27. The average segment length was
3.92± 1.41s.

The models estimated using the short segment method
for all 10 operating positions predicted the torque very
accurately and the residuals were small. The average identi-
fication VAF was high (90.2%± 2.5%).

Fig. 3 presents the intrinsic stiffness parameters as a
function of position. The elastic parameter (K) increased
as position moved from plantarflexion toward dorsiflexion
(Fig. 3A). The viscous parameter (B) increased from -0.4
rad to -0.1 rad and, dropped at 0 rad and increased again
with dorsiflexion (Fig. 3B). The inertia (I) parameter was
almost constant (Fig. 3C).

The reflex pathway was only identified at positions larger
than 0.05rad; elsewhere reflexes did not contribute signifi-
cantly to ankle torque. Fig. 4(A) shows the static nonlinear-
ities estimated at five positions. Systematic changes in both
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the slope and threshold of the nonlinearity are evident. At
0.25rad, the threshold was small and the slope was large and
at 0.05rad, the threshold was larger and the slope smaller.
Fig. 4(B) shows the linear dynamics which resembled a
second-order, low-pass filter that became progressively more
damped as the ankle moved toward plantarflexion.

IV. DISCUSSION

This paper presents a method for the identification of ankle
joint stiffness parallel-cascade structure from short segments
of stationary data. The identification method estimates the
parameters of the intrinsic stiffness directly. It fits a poly-
nomial to the static nonlinearity and a state-space model to
the linear dynamics of the reflex pathway. Initial conditions
play an important role when using short data segments. The
method accounts for them in the predicted output.

The method has similarities to some other identification
methods. Kukreja et al. considered parametric identification
of a Hammerstein structure from short segments of data
[8]. They accounted for initial conditions but their model
structure only allowed white Gaussian noise. Thus, it gives
biased estimates from experimental data where the noise is
not white. Zhao et al. used subspace methods to address this
problem [5]. However, their method was ensemble-based and
required all segments to have the same length. Furthermore,
it did not estimate individual elements of the model but rather
a state-space representation of the entire system with no
connection to physiologically relevant parameters. Ludvig
et al. recently presented a method for time-varying, non-
parametric, identification of linear systems from short seg-
ments of data [9]. However, they did not account for initial
conditions, so their method is only applicable for systems
where initial conditions do not contribute significantly, such
as systems with little memory, e.g. only the intrinsic pathway.
Thus, it gives biased results when there is a reflex activity.

We successfully identified joint stiffness in a time-varying
task where the ankle position operating point followed a
piecewise constant trajectory. This paradigm was chosen
because modulation of stiffness with joint position is well
understood for time-invariant conditions. Moreover, in this
paradigm, TI conditions were easily obtained, so extracting
stationary data was straightforward. TI identification methods
could not be used because none of the segments were long
enough for a reliable identification. The segment length was
3.92s on average while at least 10s of data is required for a
reliable TI identification.

The modulation of intrinsic stiffness with joint position
(Fig. 3) was consistent with results previously reported for
time-invariant studies [7]. The elastic and viscous parameters
(K,B) increased from plantarflexion toward dorsiflexion
while the inertia parameter was constant. Our results demon-
strated a slope change at 0rad in the rate of increase of K
and B. This is probably due to muscle activation as a result
of reflex activity when the ankle was dorsiflexed.

Reflex stiffness was significantly modulated during the
experiment in a manner consistent with the reported TI
experiments [7]. In general, the reflex contribution decreased
with joint plantarflexion. The identified system in Fig. 4
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joint position: (A) static nonlinearity; (B) linear element gain.

further reveals that this decrease is resulted by both an
increase in the threshold and a decrease in the slope of the
static nonlinearity.

An important clinical application of the method would be
in the assessment of the severity of the stiffness in spastic
stroke patients. The most widely used clinical test is the
Ashworth test, or its modified version, that involves imposing
slow, passive movement of the ankle joint over its range of
motion and the scoring of the resistance to the movement
by a trained physician. This test is subjective and does not
distinguish the intrinsic and reflex stiffnesses [10]. Our new
method could be be a useful adjunct since it quantifies the
intrinsic/reflex stiffness to passive movement and so provides
for a more objective assessment.

The new method is a powerful tool that can be applied to
characterize joint stiffness in tasks where either only short
segments of data can be recorded (e.g. high contraction
levels) or when the underlying dynamics are slow time-
varying (e.g. stance). In future, it is of interest to validate
the algorithm at different experimental conditions.
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