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Abstract— The Photoplethymography(PPG) is generally mea-
sured on a finger or an ear using contact sensors. The recent
several studies using non-contact sensor such as CCD camera
and web-cam to measure PPG have been introduced. However
the motion artifact issue is also emerging in non-contact camera
sensing similar to contact-type one because it is sensitive to
artifacts generated by subject’s head and body motion. In this
paper, the two sequential approaches for a motion artifact
reduction algorithm are presented; the one is a face tracking
method that detects and tracks the skin region of face which
is containing PPG signals, the other is the reduction method of
motion artifact due to various head & face movement such as
roll, yaw, pitch, translation and scale. Results of the proposed
KF are compared to these of the FIR band pass filter(BPF).

I. INTRODUCTION

These days, with accelerating evolution of wearable de-
vices, the applicable area of the PPG has been extended
to that of sports and daily life as well as affective com-
puting area. In recent years, several methods using non-
contact sensor such as CCD camera and web-cam have
been introduced under the desktop or mobile computing
environment[9][12][11][7].

The studies showed the possibilities of extracting the PPG
signal in the face remotely[9][12]. Currently, everyone can
use several smart-mobile apps to implement the extraction
the PPG signal using its built-in camera from user’s face and
to show his/her heart rate as basic function and are launched
as two OS version such as the iOS and the Android[1].

However, the motion artifact issues are also emerging in
non-contact camera sensing similar to contact-type measure-
ment. In detail, motion artifacts are accompanied by inherent
causes; variation of face region caused by roll, pitch, yaw,
translation and arbitrary motion of head, changes of back-
ground and illumination around face and a blurring effect by
high speed motion as well as changes of face expression. The
recent studies and smart phone apps using camera sensors
only have focused on proving the validation of extracted
PPG signals from faces that are not moving[11][7]. Thus,
a robust artifact canceling method needs to be developed for
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using desktop or mobile devices while users’ face and head
are moving naturally and unconsciously.

In this paper, We regard PPG signals as stochastic times
series. PPG time series are modeled by state space model-
ing(SSM) approach and its system parameters are estimated
by subspace system identification[3][4][10][6]. Finally, the
Kalman filter(KF) built by these parameters are applied to
predict and correct distorted PPG signals. Results of the
proposed KF are compared to these of the FIR band pass
filter(BPF). The paper is organized as follows; Section II
describes the proposed face tracking method and the SSM
model for the PPG signal from face; Section III reports the
performance results and discussion.

II. METHODS

A. Motion Artifacts and PPG
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Fig. 1. (a) Head motion, (b) an example of distorted PPG signals

One of basic and strong conditions for the PPG measure-
ment should be generally free body motion for acquisition
of the normal PPG signal. In comparison with using contact
sensors[5], the type of sensor, the measurement spot, and the
causes of motion artifacts are changed[8][2]. Fig. 1 (a), (b)
shows various types of head movements and the example
of real distorted PPG signal due to them. We can clearly
identify the difference of signal’s distortion due to motion
artifacts by head compared to period of normal PPG in the
Fig. 1 (b).

B. Face Tracker

For experimental setup, we used Logitech C905 model as
a front web-cam camera to record the videos. Videos were
recorded at 30.00 fps and 24-bit RGB color with 640x480
pixel. 10 volunteers(8 males, 2 females) were participated
in this experiment with consent. Their ages are between 26-
51 years. Subjects were seated at a desk and looking at the
monitor with the web-cam camera. Subjects are asked to
elicit various head posture: roll, yaw, pitch, scale, translation.
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In order to constantly keep track of the region of interest
(ROI) as face, the tracker need to assign the initial region
to track. First, we conduct two step to initialize ROI as
follows. Repeat face detection until a face is detected by the
face detector using OpenCV library. Once a face is detected,
repeat finding a nose by the nose detector in the face until
a nose is found. The found nose R(0) is finally set to initial
ROI as input of continuously adaptive mean shift(CAMShift)
tracker. The R(0) is converted to hue channel of the HSV
color space. Whenever the CAMShift tracker repeats the
stage of tracking face, updates the rectangular region R

′
(t)

including a face and background around it. Fig. 2 shows that
the system does the next step to extract face region from R

′
(t)

in every frame. The face region S(t) used to calculate PPG
components is defined by

S(i, j, t) =

{
IG(i, j, t) if R

′
(i, j, t)< th

0 otherwise
(1)

where (i, j) ∈ R
′
(t), IG(i, j, t) = G channel of IRGB image,

th = threshold value to exclude non-skin region. We set
th = 0.1 in this study. S(i, j, t) plays a role in extracting a
skin region of face as a mask. We used only a green channel
IG(i, j, t)of IRGB image to extract PPG signals, because we
examined that it contains the largest amount of PPG compo-
nent in various color models; RGB, YCbCr, HSV, and Grey.
The recent researches about camera-based PPG extraction
[3][4][5] support it to use IG(i, j, t).

Fig. 2. Extration the region of face ˆS(t) from ROI R
′
(t)

The face region S(i, j, t) in (1) finally is converted into a
type of 1 dimensional PPG signal in time domain. We define
the PPG signal yt as follows

yt =
1

N1

N

∑
i=1

(
M

∑
j=1

S(i, j, t)
M j

)
(2)

where (M,N) = size of S(i, j, t), M j = count of all nonzero
number in jth column vector and N1 = count of all nonzero
number in a 1st row vector. The PPG yt is derived by
averaging over all green channel pixels in the S(t).

C. State space Model

One of the appealing features of state space models is
that many traditional models, such as AR and ARIMA,
can be expressed in a linear state space system[4][10]. For
linear Gaussian state space models, the KF can be used to
compute predictors of the state variables and one-step-ahead
predictors of the observations.

Fig. 3. The unified approach of motion artifact reduction : state space
modeling and Kalman filtering for reducing of motion artifact

Fig. 3 shows the unified approach considering two aspect
of estimations; system identification as a modeling, Kalman
filtering as a deployment. In other words, the former is
related to an estimation of unknown parameters in the system
matrices: maximum likelihood estimation, subspace state
space systems identification(4SID)[10]. The latter is related
to an estimation of the unobservable state in the system:
prediction, filtering and smoothing. In this study, we exploit
subspace identification method to estimate unknown system
parameters for building a SSM which is not sensitive to
motion artifacts, because it has advantages to other methods
in terms of model complexity, computational efficiency and
simplicity which means building models directly from the
input/output data. Thus, in terms of subspace identification,
given ỹt as a only output data without input, then the method
estimates system parameters of x̃t , A, C, K, µ0, Σ0, Σe in
Fig. 3. In terms of Kalman filtering, given yt as observation
data, A, C, K, µ0, Σ0, then the KF estimates system’s state
variable of x̂t+1, Σe in Fig. 3.

The definition and modeling of ỹt used as output variable
in system identification of Fig. 3 is first step to build up the
SSM. A basic model for representing a PPG time series is
the additive model in this study

yt = αt +ψt + εt εt ∼ N(0,Σε) (3)

where the classical decomposition is yt = actual PPG ob-
servation, αt = trend component including motion artifacts,
ψt = periodic PPG component, εt = irregular component.
The behavior of yt can be generally explained by expressing
a regression model whose explanatory variables were a
deterministic trend and a set of periodic variables[4]. If these
components are not stable then this formulation would be
not proper and it would be necessary for the regression
coefficients to change over time. This flexibility is possible
with structural models like SSM[4]. The above (3) can be
relaxed in order to allow the series’ level to change through
time, leading to the local level model, in which the level
at each t is the sum of the previous period value and a
random element. In order to consider motion artifacts, we
also define these as members of trend component as well as
respiration, because we have found that these components
was belonged to low frequency band (0 ∼ 1Hz) through
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iteration of experiments. The model (3) can be defined as:

αt ' mt−1 + rt−1 +ηt ηt ∼ N(0,Ση) (4)
ψt ' ψt−1 +ζt ζt ∼ N(0,Σζ ) (5)

where mt = motion artifacts, rt = respiration components,
ηt = irregular component in this trend local level, and ζt =
irregular component in this period local level.

Second, we exclude the trend component αt in yt before-
hand for letting the system not to know motion artifacts in
the modeling phase, so that the system can try to fit as closely
as possible the measured data of only ψt +εt . Therefore, we
take a simple model ỹt in which trend ψt , with no all trend
αt .This model is simplified as:

ỹt = ψt + εt (6)
ψt+1 = ψt +ζt (7)

Finally, we convert the system (6), (7) to a state space
model of a stochastic system in an innovation form.

ψ̃t+1 = Aψ̃t +Ket (8)
ỹt =Cψ̃t + et (9)

where K is the Kalman gain and ek is an unknown innovation
with et ∼ N(0,Σe). The system (6), (7) has good physical
concept, however, the innovation model is more suitable for
4SID methods, because it has a noise model with less degrees
freedom, which can be more appropriately identified from the
given ỹt output data[10].
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Fig. 4. Modeling result of ỹt by 4SID : validation and autocorrelation test

Experiments are performed on this web-cam based PPG
system so as to acquire ỹt time series, which do not contain
motion artifacts in accordance with our (6) definition. Fig.
4 shows modeling results by subspace identification method,
which are validation results according to the order of the
fitted model by ỹt and autocorrelation results of residuals

which are differences between the one-step-predicted output
from the model and ỹt the validation data. Residuals mean
the part of the validation data not described by the model.
The chosen ỹt for modeling has properties of sampling
frequency=30 Hz, heart rate frequency=1.38 Hz=82.8
bpm, and the length=3 min.

The validation signal in Fig. 4(a) is getting to fit the
original ỹt . Each autocorrelation function(ACF) of residuals
in Fig. 4(b), (c) is getting low with increasing order of
the model. However, with the opposite case, the signal is
gradually smoothing and ACF is getting high. In terms of the
regression, it is preferable to increase the order of the model,
but it is rather advantageous to decrease it in this study,
because we can consider to remove noises of high frequency
band due to the low resolution of sampling frequency 30
Hz and low dynamic range of flesh tone color. Finally, we
adopt the order of the model to 2nd order to satisfy both
morphology of PPG and model complexity simultaneously.
This model is as follows:

A =

[
0.9511 0.2936
−0.2812 0.9571

]
, K =

[
9.657
−3.917

]
(10)

C =
[
0.01351 −0.002839

]
(11)

III. RESULTS AND DISCUSSION

In this section, we demonstrate usefulness and perfor-
mance of our proposed stochastic state space model for
PPG signals from face and the Kalman filtering for reducing
motion artifacts. The two general criterion of a waveform
analysis in time domain and power spectral density(PSD)
analysis in frequency domain are used to compare the pro-
posed KF with the conventional finite impulse response(FIR)
band pass filter (BPF). The KF is configured to 2nd order
system parameters (10), (11) generated by subspace system
identification: 4SID. The BPF is configured to bandwidth=
0.3 Hz∼2.5 Hz, sampling frequency=30 Hz, filter type=
equiripple BF, and filter order=50th. The Welch method was
used to estimate PSD and all experiments in this study are
done under the environment of the Matlab.

Fig. 5 shows results of reducing motion artifact due to
the representative cases of head & body motions. Videos
used for this test are chosen from the portion of 10 subjects
records. We can easily grasp how much four kinds of PPG
signals in Fig. 5 are distorted whenever various head related
motions are happening. We found that distorted PPG signals
have a common feature in that they are steeply ascent or
descent whenever head motions are tried through repeated
experiments and inspection.

The waveform results of the 50th order BPF are generally
not cope with steep variation and wave trends of a low
frequency band about all cases in Fig. 5. Whereas, in terms of
PSD, the location of two estimates of heart rate frequency=
fHR of the BPF in Fig. 5 (a), (d) is nearly the same with those
of the proposed KF. Fig. 5 (b) shows that many portion of
distorted PPG is still not recovered in case of the BPF. It
estimates the wrong fHR compared to the KF. Fig. 5 shows
that the proposed KF is efficiently removing motion artifacts

3282



0 5 10 15
−4

−2

0

2

4

6

8

10

Time [s]
(a)

 

 

0.1 0.2 0.3 0.4
−100

−90

−80

−70

−60

−50

(×π rad/sample)
0.1 0.2 0.3 0.4

−100

−90

−80

−70

−60

−50

(×π rad/sample)
0 5 10 15 20

−2

0

2

4

6

8

10

Time [s]
(b)

 

 

0 5 10 15 20

−5

0

5

10

15

20

Time [s]
(c)

 

 

0.1 0.2 0.3 0.4

−90

−80

−70

−60

−50

−40

(×π rad/sample)
0.1 0.2 0.3 0.4

−100

−90

−80

−70

−60

−50

(×π rad/sample)
0 5 10 15 20

−2

0

2

4

6

8

10

Time [s]
(d)

 

 

Distorted PPG
Proposed KF
50th order BPF

Distorted PPG
Proposed KF
50th order BPF

Distorted PPG
Proposed KF
50th order BPF

Distorted PPG
Proposed KF
50th order BPF

fHR fHR

fHR

fHR

Fig. 5. Reduction results of motion artifact due to head and body motion : the prosed KF with system parameters generated by SSM vs. conventional
50th order BPF (a) roll motion of head, (b) yaw motion of head, (c) pitch motion of head, (d) scale and translation motion of head & body

rather then the BPF with high filter order. We summarized
quantitative values of estimated fHR to compare reference
heart rates(bpm) as ground truth in Table I.

TABLE I
COMPARISON OF fHR , BPM, REFERENCE IN FIG. 5

Fig. 5 (a) roll Fig. 5 (b) yaw Fig. 5 (c) pitch Fig. 5 (d) scale

Filter KF BPF KF BPF KF BPF KF BPF

fHR 1.054 0.937 1.171 0.468 1.053 0.585 1.055 1.055

bpm 63.27 56.25 70.31 28.12 63.18 25.15 63.31 63.31
Reference 63 70 63 64

Through two aspect of time and frequency analysis, the
proposed approach has advantages to filter motion artifacts
cause by head & body rather than the conventional BPF filter.
One of the merits of this method is the fact that in advance
the system can reflect the special properties of observable ỹt
using maximum likelihood or subspace identification at the
stage of modeling[3]. Motion artifacts can be also removed
in distorted PPG, since not only motion artifact components
are excluded in modeling stage in (6) but these are regarded
as εt error term in the filtering state.

Heart rate variability(HRV) analysis which is an important
analysis method of PPG signals totally depends on the quality
of pulse shape in time domain. If distorted PPG signals are
processed to RR signals as peak-to-peak of pulse component,
all HRV parameters obtained from both time and frequency
domain analysis are not properly generated. Therefore, it is
important for a filter to recover original pulse’s shape of the
PPG as closely as possible in HRV analysis.

The quasi periodic component fHR is varying over time
according to individual’s physiological and psychological
condition. The performance consistency between high fHR
and low fHR not satisfied while the BPF is applied to
motion artifacts, so that it does not adaptively cover all

available bandwidth of PPG because of fixed bandwidth of
the BPF. On the other hand, the proposed KF fairly tracks
time varying fHR and corrects errors by motion artifacts
due to various head & body motions. The design of a filter
trades off complexity and performance. The complexity of
the proposed KF only using 2nd order parameters is very
low, while the BPF uses high 50th filter order.
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