
  

  

Abstract— We present an accurate seizure detection 
algorithm, and make a detailed comparison of two frequency 
analysis methods: a widely used stationary method –Fast 
Fourier Transform (FFT) and a relatively new nonstationary 
method – Hilbert-Huang Transform (HHT). Two public 
databases and one our own database were tested. The results 
show that our algorithm has very high accuracy compared with 
the state-of-the-art. More interestingly, it shows that the 
nonstationary method HHT offers better performance than the 
stationary method FFT in seizure detection. Therefore we 
propose that we should pay attention to the nonstationarity of 
EEG signal, since the “stationary assumption” may introduce 
some inaccuracy. 
 

I. INTRODUCTION 

Epilepsy is one of the most common neurological 
diseases, affecting over 3 million people in U.S. and 50 
million (~1%) people worldwide. Electro-Encephalography 
(EEG) can display clear abnormalities when a seizure begins, 
thus is very suitable for seizure detection. Conventionally, the 
detection of seizure is achieved by visual scanning of EEG 
recordings by an experienced neurophysiologist. However, 
this method has the drawbacks of time-consuming and 
subjective. Hence, many algorithms have been developed to 
detect seizure automatically since 1970s. A seizure detection 
algorithm usually consists of three stages: 1) frequency/time 
analysis; 2) feature extraction; 3) classification.  

Frequency/time analysis is the first stage of seizure 
detection algorithm, whose accuracy will directly influence 
the following two stages. Currently, many researchers use 
Fast Fourier Transform (FFT), which assumes that the signal 
is stationary. However, EEG signal itself is nonstationary 
even within a short window, thus the stationary assumption 
may introduce inaccuracy. To verify this, we compared the 
performance of FFT and a nonstationary method 
“Hilbert-Huang Transform (HHT)” in seizure detection.  

After frequency/time analysis, some features can be 
extracted to characterize the signal. The features vary from 
time domain features (such as minimum, maximum, mean, 
variance, energy, entropy, etc.) [1][2], frequency domain 
features (such as energy, dominant frequency, weighted 
frequency, etc.) [3][4], to features from cross correlation [5], 
PCA [6], ICA [3], etc.  Here we used the power in different 
frequency bands and the total power as our features. 
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Although Oweis et al. [4] also used HHT for frequency 
analysis, but it turns out that our features are more effective 
and achieve much higher accuracy.  

After feature extraction, the features will form two classes 
(seizure or non-seizure) in the feature space. The goal of the 
classification stage is to classify the testing signal to the 
seizure or non-seizure class. Some commonly used classifiers 
include K-nearest neighbor (KNN) [7], artificial neural 
networks (ANN) [8], support vector machines (SVM) [1][5], 
etc. In our algorithm, we chose the KNN classifier, which is 
usually used as benchmark of various classifiers. 

Combined all of the above three stages, we developed our 
own seizure detection algorithm, which is explained in detail 
in Part II. The testing results are shown in Part III and a brief 
conclusion is drawn in Part IV.  

II. MATERIALS AND METHODS 

In this part, we will give a detailed explanation of the 
Hilbert-Huang Transform as well as the three stages of our 
algorithm.  Fig. 1 shows the flow chart of our algorithm. 

A. Hilbert-Huang Transform 
Hilbert-Huang Transform (HHT) is a powerful tool in 

dealing with nonlinear and nonstationary signal. It mainly 
involves two steps: Empirical Mode Decomposition and 
Hilbert Transform. [9] 

1)  Empirical Mode Decomposition (EMD) 

The purpose of EMD is to decompose the signal into 
some intrinsic mode functions (IMFs) that can be handled by 
Hilbert Transform.  

An IMF represents a simple oscillatory mode that is more 
general and data-adaptive than the harmonic function: it can 
have a variable amplitude and frequency as functions of time. 
That’s why HHT can deal with nonstationary signals.  IMF is 
defined with two requirements: 1) the number of extrema and 
the number of zero-crossings must either be equal or differ at 
most by one; 2) at any point, the mean value of the envelope 
defined by the local maxima and the envelope defined by the 
local minima is zero. Fig. 2 shows the IMFs of a seizure 
signal from our database. 

In the end, the original signal can be expressed as the sum 
of the IMFs. Let x(t) represent the original signal, cj represent 

            

Figure 1.  Flow chart of the three stages of our algorithm. 
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Figure 2.  (Top) A seizure signal from our database (red line is the seizure 
onset); (Bottom) all of the IMFs of the signal.  

the IMFs and rn the residue, then we have 

                            x(t) = cj (t)+ rn (t)
j=1

n

∑ .                                 (1)  

2)  Hilbert Transform (HT) 

After we decompose the original signal into several IMFs, 
there’s no difficulty to apply the Hilbert transform to each 
IMF component. Hilbert transform is defined as: 

                   y(t) = Η x(t)[ ] = 1
π

PV x(τ )
t −τ

dτ .     
−∞

∞
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Here “PV” indicates the principal value of the singular 
integral. Now, we can calculate the instantaneous amplitude 
a(t), phase θ(t) and frequency w(t) as follows: 

          a(t) = x2 + y2 ,   θ(t) = arctan( y
x

)   and   w(t) = dθ
dt

.      (3)                                    

In the end, the original signal can be expressed as the real 
part in the following form: 
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B. Frequency Analysis  
Fig. 3 compares the FFT and HHT frequency spectrum of 

the signal shown in Fig. 2 (top), from which we can have two 
observations: 1) the resolution of HHT spectrum is better 
than FFT; 2) FFT has a wider frequency distribution, while 
HHT stresses on lower frequencies.  

The reason why HHT can give a more accurate frequency 
analysis than FFT is as follows: in FFT, the frequency is 
derived by convolution, thus there will be a trade-off between 
time resolution and frequency resolution; while in HHT, the 
frequency is derived by differentiation, hence it is not limited 
by the uncertainty principle and can provide both high time 

 

Figure 3.  Frequency spectrum of  FFT (left) and HHT(right).  

 

Figure 4.  Power change of different frequency bands during a seizure. 
(Left) FFT; (Right) HHT.  

resolution and high frequency resolution at the same time. 

C. Feature Extraction 
After frequency analysis, a total of 7 features were 

extracted: power in delta (0.5–4Hz), theta (4–8Hz), alpha 
(8–13Hz), beta (13–30Hz), gamma1 (30–60Hz), gamma2 
(>=60Hz) frequency band & total power.  

To calculate the power of a certain frequency band using 
HHT, we first calculated the energy of each IMF within a 
small moving window, then summed all of them together and 
divided by time to get the total power. The energy of each 
IMF can be calculated as follows: 1) find the time points 
when the instantaneous frequency located within the 
frequency band; 2) sum the square of the instantaneous 
amplitude corresponding to these time points.  

Fig. 4 shows the power change of different frequency 
bands of the signal in Fig. 2 (top).  From the figure we can 
see a dramatic increase of power in some frequency bands 
when seizure starts. That’s why our proposed features are 
very effective. Moreover, we can see the difference between 
FFT and HHT again: HHT stresses on lower frequencies. 

D. Classification 
In this step, the data is separated into training set and 

testing set. The training set is labeled (seizure or non-seizure 
class), and the task of the classifier is to predict labels of the 
testing set. Here we use KNN as our classifier, whose idea is 
intuitive: it classifies unlabeled examples based on their 
similarity with examples in the training set.  

For example, Fig. 5 shows 2 dimensions of the feature 
space, from where we can clearly see two classes: seizure 
(red) and non-seizure signal (blue). Our goal is to find a class 
label for the unknown testing example x (green). Assume we 
use k=5 neighbors. After searching for the 5 closest neighbors 
of x, we find that all of them belong to the seizure class, so x 
is assigned to the seizure class. 
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Figure 5.  KNN classification. 2 dimensions of the feature space (log-scale) 
are shown. x is predicted as “seizure” by the KNN classifier.  

III. RESULTS AND DISCUSSION 

Three databases were tested here: 1) Bonn database; 2) 
Freiburg database; 3) Tzu Chi Medical Center database. 

A. Result of Bonn database 
Bonn database is available online [10], which was 

recorded by the University of Bonn. There are totally five 
datasets (denoted A-E) each containing 100 single-channel 
EEG segments of 23.6 s. The sampling rate is 173.61Hz, and 
the ADC has the spectral bandwidth 0.5~85 Hz. In our study, 
we use 3 sets of them: A (recorded from healthy volunteers 
relaxed in an awake state with eyes open); D (recorded within 
the epileptogenic zones); E (recorded during seizure 
activities). Fig. 6 shows some examples from these 3 
datasets. Here we formed two classification problems: 1) 
classify set A (healthy) and E (ictal); 2) classify set D 
(interictal) and E (ictal). We separated all of the sets into 
50%-50%: half for training, and half for testing.  

1) A & E classification problem 

Table I shows that our algorithm achieves 100% accuracy 
for both FFT and HHT, which is a good result compared with 
other recent algorithms (Table II). In addition, the features 
and classifier of our algorithm are relatively simple compared 
to others. For example, Polat et al. [6] also achieved 100% 
using FFT, but they used more than 100 features.  

2) D & E classification problem 

D&E problem is more difficult than A&E, since the 
waveform difference between D&E is not as distinct as that 
of A&E (Fig. 6). Table III shows the results of using different 
window lengths. We can see that the accuracy is also very 
high, and HHT performs better than FFT in all cases.  

B. Result of Freiburg database 
Freiburg database is available online by request [11]. This 

database contains intracranial EEG recordings from 21 
patients at the Epilepsy Center of the University Hospital of 
Freiburg. There are in total 87 seizures, 509h of interictal and 
73h of preictal or ictal data. For each patient, six channels are 
available, of which 3 focal and 3 extrafocal electrodes. The 
data were acquired using a Neurofile NT digital video EEG 
system with 256 Hz sampling rate, and a 16 bit ADC. Before 
using this database, we firstly filtered the data by a 50Hz 
notch filter to remove the line noise.  

      

Figure 6.  Signals of dataset A, D and E from Bonn database.  

We tested all the 21 patients (87 seizures and 509 h 
interictal signals) in the Freiburg database. A window length 
of 4s was used, since there are many short seizures (<5s) in 
this database. Our classification criteria are: for ictal signal, 
as long as one window is classified as “seizure”, we’ll say 
that a seizure is detected; for interictal signal, if one window 
is classified as “seizure”, then we will report a false alarm. 

To guarantee the reliability of our algorithm, we used 
21-fold cross validation: use 20 patients for training and one 
for testing, then repeat this procedure for 21 times.  Since 
there isn’t enough ictal data for training, we used a window 
with 80% overlap to generate more training examples. Also, 
since the interictal signals are very long and they are more 
than enough for training, thus we randomly picked up 200 
windows from each signal. Using FFT, we obtained a 
sensitivity 89.66% and specificity 93.26%; for HHT, the 
results are better: the sensitivity is 93.10% and specificity is 
95.17% (Table IV). Also, for some special cases, for example 
patient 12, FFT gives a very bad specificity (62.98%), but 
HHT still gives a high specificity (90.64%). 

Table IV compares some algorithms using Freiburg 
database. The performance of our algorithm is significantly 
better than others. It seems that the result of Raghunathan et 
al. [15] is also good, but they only tested 5 patients, which are 
relatively easy cases. 

C. Result of Tzu Chi Medical Center Database 
This database was recorded by our collaborator Dr. 

Yue-Loong Hsin at Hualein Tzu Chi Medical Center, 
Taiwan. A total of 33 ictal recordings are available from 13 
patients. The sampling rate is 256Hz, and the channel number 
varies from 5 to 52. Fig. 2 (top) is a representative ictal 
recording from this database.  

When testing this database, we used the ictal and 
interictal signals from Freiburg database for training. We 
expect that the signal power between different databases will 
be different since they use different electrodes for recording. 
Therefore, we normalized the power in different frequency 
bands by the total power. The result shows that all of the 
seizures were detected (100% sensitivity), which have been 
verified by experienced epileptologists.  

D. Compare the Performance of FFT and HHT 
All of the above testing results show that HHT 

outperforms FFT in seizure detection (except when both of 
them achieve 100% accuracy).  

It is usually assumed that the signal can be regarded as 
“stationary” when the window is short. But our results show 

3274



  

TABLE I.  RESULT OF THE A&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 100 100 100 
HHT 100 100 100 

2048 
(11.8s) 

FFT 100 100 100 
HHT 100 100 100 

1024 
(5.9s) 

FFT 100 100 100 
HHT 100 100 100 

TABLE II.  ALGORITHMS USING BONN DATABASE (A&E) 

Authors Methods Accu 

Subasi 
 (2007) [12] 

Discrete wavelet transform (DWT), 
mixture of expert model 

95 

Polat et al. 
 (2008) [6] 

Principal Component Analysis and FFT, 
Artificial immune recognition system 

100 

Chandaka et 
 al.(2009) [5] 

Cross-correlation, LS-Support vector 
machine 

95.95 

Oweis et al.  
(2011) [4] 

MEMD or EMD, weighted frequency, 
t-testing/Euclidean clustering 

80% or 
94% 

Our work Fast Fourier Transform or Hilbert-Huang 
Transform, K-nearest neighbor classifer  

100 

TABLE III.  RESULT OF THE D&E CLASSIFICATION PROBLEM  

Window  Method Sensitivity Specificity Accuracy 

4096 
(23.6s) 

FFT 94.00 92.00 93.00 
HHT 96.00 94.00 95.00 

2048 
(11.8s) 

FFT 95.00 93.00 94.00 
HHT 95.00 94.00 94.50 

1024 
(5.9s) 

FFT 94.00 94.50 94.25 
HHT 98.00 94.50 96.25 

TABLE IV.  ALGORITHMS USING FREIBURG DATABASE 

Authors # of patients Sensitivity Specificity 

Schad et al. (2008) [13] 6 patients 38%-77%  - 
Aarabi et al. (2009) [8] 21 patients 68.9% 97.8% 
Orosco et al. (2011) 
[14] 

21 patients 41.4% 79.3% 
69.4 69.2% 

Raghunathan et al. 
 (2011) [15] 

5 patients 87.5% 99.82% 

Our work (FFT) 21 patients 89.66% 93.26% 
Our work (HHT) 21 patients 93.10% 95.17% 

 

that even the window is only 4s, HHT still has advantage 
over FFT. Therefore we conclude that the “stationary 
assumption” can introduce some inaccuracy, and propose that 
we should pay attention to the “nonstationarity” of the EEG 
signal. On the other hand, we should also notice that HHT 
takes longer time for computation. Hence, our suggestion is 
using HHT when higher accuracy is required, and using FFT 
when less computation is required. 

IV. CONCLUSION 

We developed a highly accurate seizure detection 
algorithm whose performance is very competitive among the 
current algorithms. The features and classifier in our 
algorithm are simple but very effective, therefore is very 
suitable for hardware implementation. Most importantly, we 
conducted a detailed comparison of the stationary method 
FFT and nonstationary method HHT in seizure detection, and 
found that HHT offers better performance for difficult cases 

in aspect of both sensitivity and specificity. To the best of 
our knowledge, this is the first to compare stationary 
methods and nonstationary methods in seizure detection. 
Tradeoff of accuracy and computation power suggests to use 
FFT when less computation is required and use HHT if 
higher accuracy is needed. 
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