
  

 

Abstract— Clinical electrodes for epileptic seizure 

monitoring traditionally require a tradeoff between coverage 

area and spatial resolution. However, with multiplexed, flexible 

array devices, high spatial resolution is possible over large 

surface areas. This high resolution data, recorded from 360 

electrodes or more, is difficult to review manually for subtle 

patterns. Here we develop innovative methods for visualizing 

micro-electrocorticography (µECoG) datasets. The data 

contains seizure and non-seizure dynamics that can be used to 

better understand how seizures begin, progress, and end. Novel 

visualization techniques allow the researcher to better 

understand the data by arranging it in accessible ways. This 

paper presents tools to visualize a seizure waveform’s velocity 

and location over a given window of time. 
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I. INTRODUCTION 

Epilepsy is a neurological disorder characterized by 
repeated unprovoked seizures. It affects 50 million people 
worldwide and 200,000 new cases are reported each year[1-
2]. In 70% of these cases the underlying cause of the seizures 
is not apparent. More than 30% of people with epilepsy 
continue to have seizures despite receiving anticonvulsant 
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pharmaceuticals[3]. 

We have previously described the design of flexible 
arrays of microelectrodes that conform to the surface of the 
brain (Figure 1)[4]. Recording with the high resolution 
provided by this dense array of microelectrodes reveals the 
microscale characteristics of seizure activity. Analysis and 
understanding of these signals can lead to the creation of 
effective therapeutic devices to treat patients with epilepsy.  

The characteristic signature of an electrographic seizure is 
a series of fast, high-amplitude spikes in the recorded voltage.  
This is caused by the synchronized firing of a population of 
neurons. In high density µECoG, this spiking activity is 
typically observed on multiple electrode channels. A series of 
spikes as recorded by two electrode channels is depicted in 
Figure 2. Each micro-electrode measures fields generated by 
adjacent populations of neurons, allowing us to see the 
electrical activity propagate across the area of the array. 

 

Figure 2. An example of several spikes recorded by 2 electrodes roughly 8 
mm apart on the array during a seizure. The synchronized neural activity 
creates large spikes in the recorded voltage. These spikes occur at slightly 
different times at each electrode, indicating activity that traverses the array.   

Multiple studies have observed propagating spiral waves 
in the cortex [4-6]. The spatial resolution of µECoG can 
differentiate between patterns of moving spikes that would 
simply be superposed at the site of a large conventional 
electrode. Analysis of data from µECoG arrays may be able 
to shed light on complex relationships between specific 
spiking patterns and seizure onset, propagation, and 
termination. 

Researchers spend hours analyzing EEG datasets. 
Traditional tools such as the Nicolet EEG viewer [7] stack 
the recorded voltages from each channel, aligning the time 
axis  (Figure 3). Using such software, a trained analyst can 
manually scroll through the data, searching for spiking 
patterns. This is feasible for a typical clinical array of a few 
dozen electrodes but not for hundreds or thousands of 
electrodes. The present study discusses new methods to 
enable rapid visualization of data from high resolution 
electrode arrays. 
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Figure 1.  This photograph illustrates the size and flexibility of the 
electrode array used to record seizure activity. In the experiment 
pictured, it was placed on visual cortex. The array conforms to the 
natural curves of the surface of the brain.  

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 3264



  

(1) 

(2) 

 

Figure 3.  A visualization of the electrode recordings. Differences in signal 
amplitude and phase are obscured in the simultaneous depiction of time 
series. 

Calculating the cross-correlation and peak lag for each 
electrode before and after a spike in the recorded voltages 
allows us to derive meaningful features such as the speed and 
direction of the activity[4]. This paper presents a 
visualization of the peak lags and correlation coefficients of 
the data calculated continuously to track the spikes as they 
emerge and travel across the array over time. Dynamically 
selecting the best reference electrode rather than comparing 
each electrode channel to a global average creates a 
visualization that is focused about the activity of interest. A 
masking threshold shows the path of the spiking by visually 
negating less relevant data. Unlike statistical methods used to 
describe functional connectivity across recording sites, the 
present method is designed to quickly and robustly 
summarize high throughput array recordings. 

II. METHODS 

A 360-channel electrode array (18 rows by 20 columns) 
was used to record epicortical potentials of induced seizures 
from feline visual cortex[4]. Each electrode contact covered 
300 x 300 µm2 and was spaced 500 µm apart. The array 
covered 10 mm × 9 mm of cortical surface, an area roughly 
equivalent to one commonly used clinical electrode [8]. Each 
channel was sampled at 277.77 samples / second.  The data 
were band-pass filtered from 1 to 50 Hz using a sixth-order 
Butterworth filter in the forward and reverse directions, 
resulting in zero phase distortion digital filtering and 
effectively doubling the order of the filter to a 12th-order 
filter. 

At each time sample, the cross-correlation was calculated 
using the 30 previous samples, approximately 0.1 second of 
data. This was typically the amount of time it took the 
electrographic spike waveform to cross the array. 

 

E was the matrix of voltage time-series recorded at each 
electrode. Cij was a sliding window cross-correlation between 
two electrodes. The cross-correlation was computed for each 
pair of electrodes. With the dataset used, this resulted in 
360×360×30 correlation coefficients calculated at each time-
sample. The largest value can be used to locate the time when 
the two signals are most closely aligned. We defined the peak 

lag to be the time offset, n, for which the function of Cij[n,t] 
is maximized. 

At each point in time and for each electrode, we used the 
cross-correlation function to capture the pairwise maximum 
correlation coefficients and peak lags as two 360×360 
matrices. M contained the maximum correlation values and N 
contained the peak lag values. To preserve information 
regarding signal amplitude, the cross-correlation coefficients 
were not normalized.  

The dimensionality of M and N was reduced to match 
each element to an electrode on the array. The correlation 
matrix, M, was summed to provide a measure of correlation 
for each electrode, noted as V. 

 
This resulting vector can be reshaped into an 18x20 array, 

which can be visualized with each electrode corresponding to 
a pixel in an image and colored accordingly (Figure 4). This 
map of the cross-correlations changes dynamically in time, 
showing the amount of spiking activity seen at each 
electrode. 

The lag information L is calculated relative to the reference 
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Figure 4.  A graphical user interface designed to aid researchers 
examine seizure activity. To provide a larger time context, the mean 
data two seconds before and after the point of measurement is displayed 
in the lower left-hand corner with the x-axis in seconds and the y-axis in 
millivolts. The red vertical line indicates the current time sample. Here 
there is a repeating spike pattern indicative of seizure activity. The 
bottom right panel displays the filtered voltages at each electrode at the 
current time sample, scaled to millivolts. The lag and correlation maps 
“follow” this panel: the axes in the other frames represent the spatial 
dimensions of the recording electrode array. The upper left-hand plot 
shows the lag map, with purple indicating where the waveform 
originated (largest lag) and green for where the waveform is currently. 
The areas that are blacked out are not sufficiently correlated with the 
activity of interest to be highlighted. These same areas on the summed 
correlation map are slightly darker blue, indicating their lower 
correlation values, than the other areas that have been included in the 
lag map. In this way, the summed correlation map can be seen as a 
strength measure, showing the regions in which the most variance is 
occurring. In this example, the lower left of the summed correlation 
map has the highest values: this was the area that the tracked spike was 
in during the middle of the window. The green regions represent where 
the spiking activity was before and after that moment in time. 
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electrode, Ex, which has the largest total correlation, Vx, such 
that Li = Nix. It is displayed as a lag map where elements of L 
are matched to electrodes. This enables a single image to 
capture the latency at each electrode relative to the chosen 
electrode. The signal measured at the reference electrode is 
defined as having zero lag, while the other electrodes are 
considered to have either previous or future measures of the 
same signal. Thus the lag map visually demonstrates the path 
of the spiking signal as it propagates across the array. 
Electrodes with a lag value associated with a weak 
correlation to the reference Ex are colored black. The others 
are colored by value where red indicates the most recent 
location of the relevant activity and purple is furthest in the 
past. The mean of V plus one standard deviation was chosen 
as an appropriate threshold for this coloring scheme, where 
anything above is in color and anything below is blacked out. 

III. RESULTS  

The lag map and correlation map present a new way to 
inspect data. For µECoG, the lag map can track seizure 
activity by moving the reference electrode as the center of the 
common activity traverses the array, yielding peak lag values 
that span the array. The spiral waves noted in previous 
studies are readily apparent and their paths can be quickly 

observed. 

Ex defines the zero lag location in the spatial array and thus 
regions may be considered to be leading without violating the 
causality of this method. By allowing Ex to dynamically 
change, the lag map is always centered about the most active 
region and displays the lag values associated with the 
strongest correlations. When different electrodes are selected 
as the reference Ex to provide better context for new lag 
values, the relative delay between electrodes remains 
constant, preserving the relationship between correlation and 
lag. 

A careful examination of the lag map can reveal the speed 
of the waveform: the velocity is inversely proportional to 
spatial gradient of lags. Acceleration over time may also be 
recognized as a drastic change of gradient. 

 The observer can also visually approximate the growth rate 
of the spiking activity by comparing the width of each 
colored region along the path of the waveform. This has the 
possibility to be highly useful in understanding seizure onset 
and propagation across the brain. 

The speed, the size, the acceleration, and the growth rate of 
the spiking activity can be observed in visualizations of the 

 

Figure 5. The electrode voltage recordings over 30 samples are displayed at 10-sample intervals. These images show spiking activity appearing, moving to 
the right, and decreasing in magnitude before exiting the field of view covered by the electrode array. In the final image (t=30s) new activity emerges in the 
upper right-hand corner. The lag map and summed correlation map are shown for this sample window. In a single image, the lag map provides a summary of 
the activity that occurred in the previous 30 samples. The summed correlation map shows how correlated each electrode is to the rest of the array. Because the 
correlation values are not normalized, the slight decrease in the spike’s magnitude near the middle of the array (t=10s) is shown on the correlation map with 
slightly lower (green) correlation values than the surrounding (yellow and orange) electrodes in the path of the spiking activity. Here, the electrode in the 
bottom left corner is the reference electrode because it has the largest value in the correlation map, and therefore is assigned a value of 0 in the lag map. The lag 
map shows the tracked activity moving left to right along the bottom of the array and accelerating slightly, before a new spike emerges in the upper-right. The 
duration of the activity on the array can be found by the difference between the leftmost and rightmost peak lag values. The lag map also shows that in this case 
the area of the spiking activity shrinks over time, from a maximum height of 9 pixels when it enters on the left to 5 pixels when it reaches the right side of the 
array. 
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lag, correlation, and recorded voltage potentials (Figure 5). It 
is most clearly seen in the lag map where a small gradient 
indicates a high velocity activity and a large gradient 
indicates spiking that is slower to propagate across the array. 
The direction of movement of the activity can also be 
inferred from the coloration of the lag as previously 
described.  

IV. DISCUSSION 

This visual summary of seizure activity is a novel 
perspective for inspecting recorded data. Although other 
more computationally complex methods such as Grainger 
Causality have utility in describing relationships between 
electrodes, this approach has the potential to give the user 
real-time insight into the underlying neural mechanisms of 
seizures.  

The length of the sampling window affects the results in a 
similar way to the length of the time window in an averaging 
function. With a larger sampling window, this computation 
does not need to be calculated at each instant. Care should be 
taken to select a window that is neither so small that the data 
is corrupted by noise, nor so large such that the majority of 
the meaningful variance is lost. For example, using a large 
sampling window of one second (277 samples) provides 
results that do not directly relate to a waveform’s path and 
may not be useful for examining the spatiotemporal dynamics 
of electrographic spikes. 

The lag visualization displays the velocity, duration, 
acceleration, and spatial footprint of the spiking activity in a 
single, high-resolution spatial map. A graphical interface like 
the one in Figure 4 gives an observer valuable intuition about 
the dynamics of the seizure activity. The lag map provides a 
concise view of salient details useful for the classification of 
seizure activity by both humans and algorithms. 

V. CONCLUSION 

This visualization technique provides a broader context of 
information and allows humans to examine µECoG signals 
more efficiently. This visualization technique can also be 
adapted as a feature for automated classification.  A greater 
understanding of these signals may lead to better treatment 
options for patients with epilepsy. 

In the future, an electrode array on the surface of the brain 
could stop seizures from occurring or continuing to 
propagate. An automated algorithm may inhibit seizure 
waveforms by predicting their path and stimulating specific 
areas ahead of the “storm” of seizure activity. To design 
effective devices, the electrical activity that occurs during a 
seizure must be fully understood. This research begins to 
illuminate the microscale dynamics of neural activity that 
must be understood to effectively design neurological devices 
to terminate seizures with electrical stimulation. 
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