
  

  

Abstract— The extraction method of classification feature is 
primary and core problem in all epileptic EEG detection 
algorithms, since it can seriously affect the performance of the 
detection algorithm. In this paper, a novel epileptic EEG feature 
extraction method based on the statistical parameter of 
weighted complex network is proposed. The EEG signal is first 
transformed into weighted network and the weight differences 
of all the nodes in the network are analyzed. Then the sum of top 
quintile weight differences is extracted as the classification 
feature. At last, the extracted feature is applied to classify the 
epileptic EEG dataset. Experimental results show that the single 
feature classification based on the extracted feature obtains 
higher classification accuracy up to 94.75%, which indicates 
that the extracted feature can distinguish the ictal EEG from 
interictal EEG and has great potentiality of real-time epileptic 
seizures detection. 

I. INTRODUCTION 

Epilepsy is one of the most common neurological 
disorders, which seriously affects the life and work of patients. 
With respect to neuronal firing pattern, brain activity during an 
epileptic seizure stage differs greatly from that in the normal 
state. The electroencephalogram (EEG), which is a highly 
complex signal, is mainly sources of information that is used 
to study brain function. It plays a significant role in the 
diagnoses of neurological disorders such as epilepsy. The 
traditional detection of the epileptic seizure requires 
time-consuming observation and analysis of the entire length 
of the EEG data by an expert, which is a tedious and subjective 
diagnostic process.  Computer aided technologies have set out 
to settle this problem, and thus epileptic EEG automatic 
detection have been researched for several years. 
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The techniques developed for automatic detection, based 
on EEG, transform the mostly qualitative diagnostic criteria 
into a more objective quantitative signal feature classification 
problem. For ideal classification problems, the classification 
feature contains only the intrinsic information of the sample, 
which means that the extracted feature gets better 
classification performance when it obtains more essential 
information. Because of the growing awareness that the 
electrical activities of the brain are complex nonlinear 
dynamic systems [1], the nonlinear features can better describe 
the nature of EEG, compared with the traditional other 
features. Numerous nonlinear features of EEG signals have 
been proposed recently [2]-[4]. Based on largest Lyapunov 
exponent, reference [2] discussed the detection and prediction 
of epileptic seizure. Reference [3] analyzed the correlation 
dimensions of epileptic EEG, and concluded that the 
correlation dimension of the epileptic EEG was larger than the 
normal EEG’s. The Hurst index of the epileptic EEG was 
discussed in [4] and the results shown that the normal EEG 
was uncorrelated whereas the epileptic EEG was long range 
anticorrelated. Spectral entropy and embedding entropy, 
which measured the system complexities, were introduced to 
epilepsy detection in reference [5]. The classifiers have also 
been widely applied into the epilepsy detection algorithm in 
reference [6]-[11]. These literatures get a conclusion that if a 
classification feature can clearly distinguish two categories, 
with the classification feature combined with classifier, the 
classification algorithm will obtain even better classification 
performance. 

Recently, complex networks theory provided a new 
perspective for nonlinear time series analysis. Zhang and 
Small [12] proposed an algorithm that transformed the 
pseudoperiodic time series into complex networks. A bridge 
between nonlinear time series analysis and complex networks 
theory has been built. Reference [13] converted time series 
into complex network based on time delay embedding theory, 
and shown, compared with pseudoperiodic time series, that the 
chaos attractor reveals a more heterogeneous structure and 
exhibits small world feature. The correlation networks of time 
series under different dynamics, which had different degree 
distributions, were constructed by Yue Yang et al. [14]. The 
transform was based on the time delay embedding theory and 
the similarity of two nodes was measured by correlation 
coefficient. Lacasa et al. [15] first proposed the visibility 
graph algorithm, which could convert arbitrary time series into 
a graph. Tang et al. [16] applied the complex networks theory 
into the analysis of the topology characteristics of the 
nonstationary traffic flow time series network. This emerging 
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research area should be taken seriously, since the complex 
networks theory accumulated plenty of statistical properties 
and many of them have not been exploited. 

In this study, based on the time series’ weighted complex 
network, a new feature for epileptic seizure detection is 
proposed. Firstly, the EEG signals are converted to the 
weighted networks. Then the ranked weight differences (wdr) 
of the converted networks are obtained and the sum of top 
quintile wdr is extracted as the classification feature to classify 
the epileptic EEGs. The experimental results show that the 
extracted feature can distinguish the ictal EEGs from the 
interictal EEGs. 

This paper has been organized as follows. Section 2 
describes the EEG signal benchmark dataset used in the 
present paper and presents the algorithm of converting the 
time series into weighted network. The algorithm of feature 
extraction for epileptic automatic detection is also introduced 
in this section. In Section 3, the evaluation parameters and the 
experimental results are presented. Finally, some conclusions 
are included in Section 4. 

I. MATERIALS AND METHODS 

A. Data Description 
In this study, the publicly-available database introduced in 

[17] is used for testing the extracted feature performance. The 
EEG data set D and set E are used in this work, each of which 
contained 100 single-channel EEG data of 23.6 s duration. 
The set D was composed of intracranial EEG recordings 
during interictal periods. The intracranial EEG signals in set E 
were recorded during ictal periods. They were all measured 
through using deep electrodes placed within the epileptogenic 
zone of the brain. The EEGs in two sets were taken from five 
epileptic patients experiencing pre-surgical diagnosis. Each 
datum had 4097 sampling points. Fig. 1 (a) and (b) depict 
examples of interictal EEG and ictal EEG, respectively. 

B. Approach for Converting the Time Series into Weighted 
Network 

Various statistical properties in complex network theory 
may dig up information, which cannot be obtained by classical 
nonlinear time series analysis methods. Weighted network is 
one type of complex networks, which consists of a node set 
and the weight sets for every nodes in the network. 

The time series, {ui}i=1
N, is first mapped into the node set of 

the weighted network. Here N is the length of time series. 
Through the time delay embedding process for a time series, 
the node set can be constructed [13] 

 ].,1[),,...,,( )1( Miuuux miiii ∈= −++ ττ
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where the m is embedding dimension,  τ is time delay and  
M=N–(M–1)τ is the number of obtained vectors. Then the 
obtained M vectors compose the node set of the weighted 
network. 

The weights of two nodes in the network are measured by 
the Euclidean distance 
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After a pair-wise test of all the nodes, the time series weighted 
network (TSWN) is constructed and a symmetric distance 
matrix is obtained, which is represented by W=(wij)M and is 
called as weight matrix. The node in phase space represents a 
state of the time series and the distance between two nodes 
measures the similarity of the two states. Two nodes having a 
smaller distance (much nearer in phase space) have bigger 
similarity. 

C. Feature Extraction Method Based on the Time Series’ 
Weighted Network  

The weight matrix contains the information of the entire 
TSWN, thus the analysis of TSWN can be implemented by 
studying the weight matrix. The weight difference of the ith 
node (wd(i)) measures the sum of normalized weights 
difference among the ith node’s weight set (WSi) and is 
defined as 
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where the s(i) represents the vector strength of the ith node and 
is defined as 
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According to the (3), with the increasing of the difference 
of weights in the WSi, the value of wd(i) increase. The wd(i) 
gets the 1/M only when the weights in the WSi have the same 
value. In this way, the value of wd(i) measures the similarity 
degree of the weights in the WSi, and the smaller the wd(i), the 
more similar are the weights in the WSi. Through the analysis 
of the weight differences of all the nodes in the TSWN, the 
complexity (irregular) of the overall TSWN can be obtained. 
Therefore, it can be used as a tool to distinguish the time series 
with different dynamics, which have different network 
structures. 

In order to facilitate subsequent analysis, the weight 
difference values of the TSWN are arranged by an increasing 
order, represented by the symbol “wdr”,  

 }.],1[)({rank Miiwdwdr ∈=  (5) 

According the awareness that the dynamic structure of 
interictal EEG signal shows more complex than the ictal EEG 
dynamic structure [1], the sum of the top α smaller weight 
differences is extracted as feature and is defined as  
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where the α represents the number of nodes for feature 
extraction. The top nodes are taken into consideration because 
of smaller weight differences play an important role in the 
TSWN. Based on the extracted feature, the single feature 
automatic detection scheme can be established. 

II. RESULT AND DISCUSSION 

A. Performance Evaluation Parameters 
The performance of the proposed algorithm is evaluated 

by computing parameters such as sensitivity, specificity, and 
overall accuracy, respectively defined as follows [6]: 
Specificity (SPE): number of true negative decisions/number 
of actually negative cases; Sensitivity (SEN): number of true 
positive decisions/number of actually positive cases; Overall 
accuracy (ACC): number of correct decisions/total number of 
cases. A true negative decision occurs when both the classifier 
and the physician suggested the absence of a positive detection. 
A true positive decision occurs when the positive detection of 
the classifier coincided with a positive detection of the 
physician.  

B. Experiment Results and Discussion 

In experimental section, the m and τ are selected as 8 and 1 
for embedded process [18]. In performance evaluation process, 
the interictal EEG and the ictal EEG are regarded as the 
positive case and the negative case, respectively. All the data 
in two sets are divided into four equal-length non-overlapping 
sections (each section has 1024 points), which are regarded as 
four independent samples. The 400 interictal and 400 ictal 
samples constitute the test set.  

The TSWNs of the 800 samples are constructed and also 
the corresponding wdrs are obtained. Fig. 1 (c) and (d) show 
the four wdrs of the one interictal EEG and four wdrs of the one 
ictal EEG, which are drawn in Fig.1 (a) and (b), respectively. 
It can be clear found that wdrs of ictal EEG are approximate 
horizontal curves, whereas the shapes of the interictal EEGs’ 
wdrs have an apparent increasing trend. That is to say, the ictal 
EEG TSWN has more small weight differences, whereas the 
interictal EEG TSWN has more large weight differences. That 
means that the interictal EEG TSWN is more complex than the 
ictal EEG TSWN. This confirms the conclusion that the time 

series dynamic under epileptic interictal period is more 
complex than epileptic ictal period [1]. After a one by one 
observation, the similar result is found. The observation result 
indicates that the different dynamics of the EEG signals under 
different brain conditions can be distinguished through 
different wdrs shapes in TSWN domain. Therefore the wdr

210 
(around one-fifth of the total number of nodes) can be 
extracted as the classification feature. 

Fig. 2 depicts the boxplots of wdr
210 values of two kind 

EEG signals. It can be found that the wdr
210s of ictal EEG are 

mainly distributed in [0.2424, 0.2197], compared with the 
[0.2581, 0.2326] of interictal EEGs. The main body of the 
wdr

210 of ictal EEG is lower than the interictal EEG’s. 

The distribution of total wdr
210s is shown in the Fig. 3, 

where each ‘x’ represents the wdr
210 of one interictal sample 

and each ‘•’ represents the wdr
210 of one ictal sample. It can be 

found that the wdr
210s of ictal samples are smaller than the 

interictal samples except several special samples. Only 20 ictal 
samples and 22 interictal samples are put into wrong cases 
when the samples are classified by the dashed line (0.2363). 
The classification accuracy is 94.75%. In order to compare the 
classification performance of the extracted feature, the 
approximate entropy and sample entropy, listed in Table I, are 
also used as extracted feature to classify the same test set. It 
can be seen from Table I, the wdr

210 shows the best 

 
Fig. 1.  Plots of epileptic EEG signals for (a) interictal, and (b) ictal. 
And the wdrs of four subsegments of these two EEGs are respectively 
shown in (c) and (d). 

 
Fig. 2.  The boxplots for wdr

210s of the ictal EEGs and interictal EEGs.

 
Fig. 3.  Result of the single feature automatic detection scheme based 
on the extracted feature, where ‘x’ is for the feature values of the 
samples in interictal set and ‘•’ is for the feature values of the samples
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performance not only in classification SEN and SPE, but also 
in ACC. 

The correlation between the accuracy of the extracted 
feature and the parameter α are summarized in Table Ⅱ. The 
recognition accuracies of the feature first increase with the 
increase of the parameter α, and then decrease after they 
reached the peak accuracy value (94.75%, when α=210). 

TABLE I.  RESULT OF THE SINGLE FEATURE AUTOMATIC DETECTION 
ALGORITHM BASED ON THE EXTRACTED FEATURE 

Feature SEN (%) SPE (%) ACC (%)

Approximate Entropy 83.00 91.50 87.25 

Sample Entropy 91.50 84.00 87.75 

wdr
210 95.00 94.50 94.75 

TABLE II.  THE CORRELATIONS BETWEEN THE ACCURACYIES OF THE 
EXTRACTED FEATURE AND THE PARAMETER.  

α 100 210 300 400 500 

ACC (%) 87.25 94.75 92.87 90.50 87.88 

α 600 700 800 900 1000 

ACC (%) 82.25 77.12 71.75 66.75 62.87 

Table Ⅲ lists the accuracies of several established epilepsy 
automatic detection algorithms, which are combined with the 
classifier and are applied to the same epilepsy dataset. Here, 
the DFA-α is the scaling exponent of the detrended fluctuation 
analysis of epileptic EEG. The results of approximate entropy 
+ SVM and sample entropy + SVM are obtained based on the 
results listed in Table I. Table Ⅲ shows that the single feature 
classification algorithm based on the extracted feature 
proposed in this study has the highest classification accuracy 
compared with other classification algorithms combined with 
classifier. To some extent the result shows that the feature, 
wdr

210, extracts more essential information than other features 
listed in Table Ⅲ, which makes wdr

210 fit the main purpose of 
the feature extraction method. 

TABLE III.  CLASSIFICATION ACCURACIES OF SEVERAL DETECTION 
ALGORITHMS  

Feature ACC (%)

DFA-α + SVM[10] 82.00 

Hurst + SVM[11] 87.25 

Approximate Entropy + SVM 89.00 

Sample Entropy + SVM 91.00 

Proposed approach in the present paper 94.75 

III. CONCLUSION 
This paper develops a novel feature extraction method for 

epileptic EEG which can be used for classifying the interictal 
and the ictal EEG subjects. The proposed algorithm firstly 
mapped the EEG signal into the phase space according to time 
delay embedding theory and the TSWN is constructed based 
on the embedded attractor. Then the weight differences of all 
the nodes in the TSWN are analyzed and the sum of top 

quintile wdrs is defined and extracted as the classification 
feature. Finally, the extracted feature is applied into the single 
feature classification for epileptic EEG. Experimental results 
show that the extracted feature can clearly describe the 
essential difference between the two kind signals and obtains 
the higher classification accuracy about 94.75%. Taking into 
account the advantage, the proposed extracted feature in the 
present paper shows the great potential for real-time detection 
of epileptic seizure. 
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