
  

 

Abstract— In this paper we explore a novel feature for the 

segmentation of heart sounds: the entropy gradient. We are 

motivated by the fact that auscultations in real environments 

are highly contaminated by noise and results reinforce our 

suspicions that the entropy gradient is not only robust to such 

noise but maintains a high sensitivity to the S1 and S2 

components of the signal. Our whole approach consists of three 

stages, out of which the last two are novel contributions to this 

field. The first stage consists of typical pre-processing and 

wavelet reconstruction to obtain the Shannon energy 

envelogram. On the second stage we use an embedding matrix 

to track the dynamics of the system, which is formed by delay 

vectors with higher dimension than the corresponding 

attractor. On the third stage, we use the eigenvalues and 

eigenvectors of the embedding matrix to estimate the entropy of 

the envelogram. Finite differences are used to estimate entropy 

gradients, in which standard peak picking approaches are used 

for heart sound segmentation. Experiments are performed on a 

public dataset of pediatric auscultations obtained in real 

environments and results show the promising potential of this 

novel feature for such noisy scenarios. 

I. INTRODUCTION 

Cardiac auscultation is the simplest, fastest and cheapest 
method for heart examination. It provides information about 
the structural and functional characteristics of the heart using 
a simple medical device, the stethoscope. Electronic versions 
of this device are capable of registering and optimizing the 
quality of auscultation signals, generating what is called a 
phonocardiogram (PCG) signal. Data collection systems such 
as DigiScope [1] can obtain PCG signals such as the one 
depicted in Figure 1. Here we can observe the various 
components of a heart cycle, including S1 (first heart sound) 
and S2 (second heart sound). These establish the boundaries 
of the other two fundamental components of a heart cycle: 
the systole (period between S1 and S2), and the diastole 
(period between S2 and S1). S1 and S2 are generated by the 
opening and closing of the various heart valves and in some 
auscultations we have the presence of additional sounds such 
as S3, S4 or murmurs. [2] 

Heart sounds segmentation is a fundamental step for 
extracting useful physiological information from heart 
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sounds. It is typically preceded by a pre-processing step, and 
followed by feature extraction and classification steps in 
traditional statistical pattern recognition approaches. The 
PCG signal is usually pre-processed in order to extract the 
heart sound envelogram (HSE). Liang et al [3] presented 
different non-linear methods to calculate the HSE, 
demonstrating that the Shannon energy emphasizes the 
medium intensity signal and attenuates the effect of low and 
high intensity signal. However, in noisy environments, the 
HSE still keeps high noise levels, making it difficult to 
extract useful heart sounds. Other approaches include the use 
of wavelet decomposition and reconstruction [4], [5], but for 
higher heart rates and noisy environments, differentiating 
between heart sound components is still a challenge [6]. 
Since time-based features are not enough to differentiate the 
heart sound components different approaches are proposed 
using the frequency content of the heart sound components 
[7], or the entropy of the heart sound [8]. 

 

Figure1.  A typical heart sound (S11) and its four main components: first and 
second heart sounds (S1 and S2), systole (S12), diastole  
(S21) and the entire heart cycle (S11) 

Although PCGs are collected in clinical challenging 
environments, they still exhibit periodicity. Kumar et al. [6] 
detected heart murmurs using complexity signatures 
calculated directly on the PCG signal and results reported 
indicate that entropy is able to capture periodic signal 
components. 

This paper is structured as follows: the proposed 
methodology is presented in Section II, followed by 
experimental results in Section III. A discussion concludes 
the paper in section IV. 

II. METHODS 

The full proposed methodology (Figure 2) can be divided 

into three sections: data pre-processing follows previous 

research and state-of-the art (2.A), embedding matrices are 

proposed to better capture the dynamics of the signal when 

facing high levels of noise (2.B), and the entropy gradient 
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(2.C) is then calculated and used as the signal in which peak 

picking is applied for segmentation (2.D).  
 

 
Figure 2. Structure of the proposed algorithm (novel sections in grey) 

A. Signal Pre-Processing 

The PCG is filtered with a band-pass, zero phase 
Butterworth filter order 6 (25-900Hz) to eliminate noise, 
decimated to 2kHz and finally normalized [9]. Afterwards, a 
wavelet transform using an order 6 Daubechies wavelet is 
applied to extract its approximation level 4 [6]. The resulting 
signal is normalized and then used to obtain the Shannon 
Energy envelope [3]. This procedure follows previous 
literature on this topic and due to space limitations we leave 
this motivation and explanation to the mentioned key 
references. 

B. Embedding Matrices 

Our motivation to use embedding matrices comes from 
the fact that heart cycles can vary in duration, not only 
between different persons but even for a single person. 
Furthermore, a sequence of samples can be used to quantify 
a variation but this is implicitly connected with the sampling 
rate used and the cycle duration, and not really to the 
fundamental structural pattern of the cardiac signal. 
Embedding matrices are a mathematical tool that can help us 
model non-linear data series and they can possibly be used 
to adequately model PCG signals. Assuming that the noise 
of real environments does not have relevant or repetitive 
structural elements, an interesting side-effect emerges, 
which provides us an additional layer of noise reduction. 

The first step is to convert the envelope signal in a 
sequence of state vectors as it was demonstrated by the 
embedding theorem [10]. Let x(t) be the time series 
representing the heart sound envelogram. A new delay 
vector is formed in the i

th
 state of observation    

  ( )   (   )    (  (   ) )  (m is the dimension 
vector) by shifting   samples towards the right in the data 
series. 

The difference in number of samples    between adjacent 
components of the delay vectors is equal to 2. If    is not 
close to 1 the segments constructed are formed by a sequence 
of data that may not correlated and loss of information is 
inevitable (except for  = 1). The number of delay vectors in a 
time series of 𝑁 points is 𝑃  𝑁   (   ). All the delay 

vectors   
𝑗
∈ ℝ𝑚    𝑗    2 ⋯𝑃 have the same dimension 

independently of the observation state  . This is achieved by 
using a cyclic vector implementation as it is shown in Figure 
3. 

 

Figure 3. Using delay vectors of dimension m=(length(signal))/2+1 it is 

only possible to get one sample from the complete signal, therefore the 

rejection region Rej will be Rej=(length(signal))/2-1. This rejection region 
is the main cause of the variation observed in the signal entropy, since from 

one instance to another we are discarding one sample point (with some 

degree of predictability) and collecting a new sample point (with possible a 
different degree of predictability) 

C. Entropy Gradient 

The autocorrelation of each embedding matrix calculated 
in the previous section is calculated in (1). 

 𝐶  𝑋 
𝑇𝑋    where   𝐶 ∈ ℝ(𝑚×𝑚) (1) 

𝐶  is a real symmetric matrix, its eigenvalues are real and 
its eigenvectors are orthogonal. 

 Let 𝐷  be the diagonal matrix of the eigen values of 
𝐶   sorted in a descending order  ƛ1> ƛ2>....>ƛ𝑚. The 
diagonal matrix 𝐷   is the spectrum of the eigenvalues. The 
eigenvalues ƛ  are the squared length of the semi-axis of the 
hyper-ellipsoid which best fits the cloud of data points and 
the corresponding eigenvectors give the direction of the axis 
in the hyper-ellipsoid [10]. The highest eigenvalues are 
associated with the most relevant structures of the signal. In 
contrast, the lowest eigenvalues are usually associated with 
very small variations and noise. Using the 𝐷  vector, the 
entropy in the  𝑡𝐻state of observation is given by (2) [10]. 

 
𝐻( )   ∑ ƛ𝑘

  log(ƛ𝑘
  )

𝑚

𝑘=1

 (2) 
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The gradient of entropy 𝛻𝐻 is approximated with finite 
differences, using the two adjacent neighbors in each point of 
the function 𝐻. After differentiation 𝛻𝐻 is squared point by 
point, making all data points positive. Figure 4 
shows the output of the envelogram (after 2.A), and the 
results obtained after the employment of the embedding 
matrices and the entropy gradient (2.C). Most noise appears 
to have been eliminated simply because noise is non-periodic 
and thus does not produce a significant difference in the 
values of entropy for different observation states. 

 

Figure 4. For a specific PCG signal we can observe its envelogram in green 
and its entropy gradient in red (using a time window of 25ms and a delay 

time equal to 2 samples) 

Periodicity is mapped in the embedding matrix 𝑋. As we 
can observe in Figure 4, a shift in the state of observation 
𝑋 → 𝑋 +1  can severely change the spread distribution of the 
data points thus generating a large entropy gradient peak. 
This is mainly caused by the appearance or disappearance of 
S1 and S2 signals in the borders of the windows, causing 
severe variations in the pattern that is repeated. An example 
would be a window that has 3 S1 peaks and 3 S2 peaks. With 
a certain shift, we might lose one S1 peak and thus obtain a 
very different entropy measurement for a signal with 2 S1 
peaks and 3 S2 peaks. Another expectable interesting 
observation is that the entropy gradient response to S1 and S2 
are different mostly because S1 is more stable in terms of 
periodicity and exhibits a lower frequency content when 
compared to S2.  

 

Figure 5. Output of the envelogram (blue) and entropy gradient (red) 
using different time windows: 25 ms (upper-left corner), 50 ms (upper-right 

corner), 150 ms (lower-left corner) and 250 ms (lower-right corner) 

 

An important parameter is the dimension of the delay 
vector   of the embedding matrix. If m is too low then the 
benefit of using embedding matrices is negligible. On the 

other hand, if it is too high it will add redundancy and thus 
degrade the performance of the algorithm. An estimate of the 
dimension of the delay vector is calculated using the false 
neighbor method [10]. This method uses the idea of 
neighbors and two points are considered to be neighbors if 
their distance is less than a pre-defined threshold. Suppose 
that the dimension of the delay vector is m and it is projected 
into a lower dimensional   0. If the number of false 
neighbors does not increase substantially from  →  0then 
it is acceptable to reduce the dimension of the delay vectors 
[10]. These results are plotted in the Figures 5 and 6, for a 
sample PCG signal. 

Figure 6. The relative number of false negatives plotted against the minimum 
distance to be considered as a possible neighbor 

Observation of Figures 5 and 6 hints that a time window 
m of 25ms (5 samples) is enough. Although beyond the scope 
of this paper, a deeper inspection of how this varies when 
additional sounds are present (S3, S4, murmurs) is an 
interesting topic to be explored in the future. 

D. Segmentation 

A peak picking algorithm is used to search for candidates 
of heart sounds S1 and S2. Following previous literature [9] 
the algorithm uses a timing window of 50ms and only the 
maximum peak in it is considered a potential candidate for a 
peak. Peaks are only selected if their energy is superior to a 
0.8 quantile of the total energy of the signal and if they are at 
least spaced 150ms from their neighboring peaks to ensure 
that heart sound splits are not erroneously detected. 

III. RESULTS 

A. Materials 

To evaluate the segmentation algorithm performance 
using either entropy gradient or just the traditional 
envelogram signal we have used a public dataset from the 
Pascal ‘Classifying Heart Sounds Challenge) [11]. This 
database includes PCGs from pediatric patients with their 
corresponding S1 and S2 annotated positions. This dataset 
was used because it has the best quality in terms of the 
annotation of the locations of S1 and S2. 

In this study 90 heart sound segments are used 
corresponding to a total 1415 annotations examples of S1 and 
S2, within a time range between 1.2 and 14.7 seconds.   

B. Performance Metric 

For the evaluation of the performance of the algorithms, 
we have used the metric defined in the Pascal Challenge to 
calculate the error in S1 and S2 segmentation (3,4). 
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𝛹𝑘  

∑ ((∣ 𝑇𝑆1    T̂𝑆1  ∣) + (∣ 𝑇𝑆2   T̂𝑆2  ∣))
𝑁𝑘 2⁄

 =1

𝑁𝑘

 (3) 

 

𝛹  ∑𝛹𝑘

𝑁𝑑

 =1

 (4) 

Where 𝛹𝐾is the average distance between the real 
observation of S1 and S2 and their automatic classification 
equivalents, for the k-th sound clip in the dataset. 𝑁𝐾 is the 

number of S1 and S2 in the k-th sound clip. T̂𝑆1    and 

T̂𝑆2   indicate the real location of S1 and S2 in the i-th sound 

clip and 𝑇𝑆1    and 𝑇𝑆2    indicate the calculated location of S1 

and S2 in their respective sound clip. 𝑁𝐷 is the total of sound 
clips in the dataset. 𝛹 is the sum of all average distances 
between the calculated and the real location of S1 and S2. 

The Pascal metric (PM) calculation does not take into 
account the number of false or true positives obtained. An 
algorithm with a higher rate of false positives could have a 
better rate in the Pascal metric than another algorithm with a 
lower rate of false positives. As an additional performance 
test we used the true positive (TP) and false positive (FP) rate 
to compensate these limitations. 

Non-parametric paired sample test was used for the 
comparison of the Pascal metric (Kolmogorov-Smirnov, 
paired sample Wilcoxon signed ranks test), p-value<0.05 was 
considered significant. 

C. Results 

The entropy gradient performance is compared to the 
original envelogram signal obtained in the “Envelogram” 
stage of the diagram depicted in Figure 2. Both approaches 
use the same segmentation methodology explained in section 
2.D). Table 1 presents these segmentation results, and we can 
observe that although the entropy gradient approach exhibits 
similar performance regarding the true positives detection, it 
reduces the number of false positives by almost half.  

TABLE I.   SEGMENTATION RESULTS USING ENTROPY GRADIENT AND 

SHANNON ENERGY ENVELOGRAM (TP – TRUE POSITIVES; FP – FALSE 

POSITIVES; PM – PASCAL METRIC) 

     
Annotated 1415 

Detected TP FP PM 

𝛻2        1479 0.984 0.046 6 

           1550 0.987 0.096 9 

 

As an additional experiment, we compared the 
classification performance when using different time 
windows for the embedding matrix construction. In Table 2 
we can observe that the overall performance using M = 25ms 
is better than using a larger time window of M = 250ms. An 
‘ideal’ time window should have the same dimension of the 
inherent attractor of the signal, and as we have explained 
before, this is an interesting future work topic to be explored, 
especially since the dataset involves a good variety of heart 
rates given the significant age differences of the auscultated 
children. 

 

 

 

TABLE II.  ENTROPY GRADIENT USING DIFFERENT TIME WINDOWS (TP – 

TRUE POSITIVES; FP – FALSE POSITIVES; PM – PASCAL METRIC) 

SIZE 
Annotated 1415 

Detected TP FP PM 

  2    1479 0.984 0.046 6 

  2 0   1844 0.977 0.340 20 

 

IV. DISCUSSION 

This paper introduces a new feature for heart sound 
segmentation that targets signals obtained in noisy 
environments. The results shows an increase in accuracy 
performance when compared to the traditional Shannon 
energy envelop features, maintaining the same levels of 
precision. This is especially motivating since all the 
experiments were made in real data collected in real noisy 
environments. We can conclude that the added adaptability 
of using embedding matrices, combined with the small 
morphological signal assumptions of a feature such as the 
entropy gradient are a promising avenue for future robust 
heart sound segmentations algorithms for real noisy 
environments. 
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