
  

 

Abstract— Models define a simplification of reality, which 

help to understand function. The arterial system has been 

modeled in many ways: lumped models, tube models and 

anatomically based distributed models. In this work, arterial 

segments were modeled as thin nonlinear elastic tubes filled with 

an incompressible fluid, whose governing dynamics were 

denoted by the Korteweg and DeVries equation. In order 

characterize the pressure pulse propagation, a discrete multi-

segmented conduit was proposed. Arterial wall mechanical 

parameters were obtained from existing literature and assigned 

to each individual segment. The numerical model was 

developed starting in the aortic arch, and ending at the femoral 

artery. 

The main idea of this article was to perform a computational 

simulation of pressure wave propagation, considered as a 

solitons combination, along several segments of the arterial tree.  

I. INTRODUCTION 

Historically, a qualitative interpretation of changes in the 
texture and strength of the arterial pulse is associated with a 
change in health and disease. In this sense, atherosclerosis 
constitutes the essential link between the risk factor and 
clinical cardiovascular disease as myocardial infarction, 
stroke or arteriopathy of the lower limbs [1]. The beating 
heart pumps blood pressure and flow pulsations that 
propagate as waves through the arterial tree. These waves are 
reflected at transitions of the arterial geometry and elasticity 
[2]. Associated abrupt changes in geometry and elastic 
properties induce abnormal wave reflections which modify 
the characteristics of arterial wave propagation and even 
affect cardiac dynamics [3]. Under physiological conditions, 
the pulsatile burden is lower in central than in peripheral 
arteries, thus protecting the heart against an excess load 
[4].For this reason, the study of wave contour and speed of 
the arterial blood pressure (ABP) results highly relevant in 
the arterial wall mechanics. 

The modeling of arterial wave propagation extends our 
knowledge about the functioning of the cardiovascular 
system and provides means to diagnose disorders and predict 
the outcome of medical interventions [2]. Models define a 
simplification of reality, which help to understand their 
function. The arterial tree has been described in many ways: 
lumped models, tube models and anatomically based 
distributed models [5]. The cardiovascular system can be 
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seen as a complex double chamber pump, which ejects blood 
into vessels organized into vascular compartments forming a 
closed circulation loop. This point of view is useful for 
building models of the whole system as interconnection of 
simpler subsystem models [6]. 

In the systemic circulation large vessels are approximated 

by tubes with thin-elastic walls, while the blood filling the 

vessel is considered as a continuum, incompressible fluid [7]. 

The propagation of finite amplitude waves in a fluid-filled 

elastic or viscoelastic tube has been examined in several 

works [8], [9], [10] [11], [12]. Depending on the balance of 

nonlinearity, dispersion and dissipation, the Korteweg and 

DeVries equation (KdV), Burgers or KdV-Burgers equations 

are obtained as the evolution equation. 

In [10] and [11] it has been proved that if the blood 

viscosity is neglected, a segment can be modeled as a thin 

nonlinear elastic tube filled with an incompressible fluid, 

whose governing dynamics is denoted by the KdV equation 

(KdVE). Despite this, few numerical simulations of the 

obtained models equations have been developed in order to 

study wave behavior in a system composed of arterial 

compartments. The ABP representation by means of solitons 

has been introduced by [10]. Additionally, an interesting 

reduced model, consisting of a nonlinear superposition of 

two or three-solitons for the solution of the KdV equation 

(KdVE) has been used to describe these propagation 

phenomena [13]. 

This new approach, which provides a soliton combination 

as a solution, already captures some of the known pulse 

pressure phenomena such as steepening (increase in the 

amplitude) and peeking (decrease in the width). Solitons can 

be defined as nonlinear dispersive waves that travel without 

presenting structural changes. Additionally, an interaction 

between solitary waves only influences their relative phase, 

preserving its original properties [14]. 

The main idea of this article is to perform a computational 

simulation of pressure wave propagation, considered as a 

solitons combination, throughout several segments of the 

arterial tree. To this end, each segment was modeled as a 

KdVE where vascular dimensions and elastic constants were 

obtained from the existing literature. 

II. MATERIALS AND METHODS 

A. Model Equations 

In the model proposed in [6] several assumptions were 
made. Firstly, large arteries were considered as an elastic tube 
and the fluid was supposed to be incompressible with a 
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Poiseuille flow. Secondly, blood viscosity was neglected and 
only contemplated in the outflow boundary condition. As a 
result, a quasi 1D model of the Navier Stokes equation in the 
boundary layer of a thin nonlinear elastic tube was proposed 
as follows: 

          

     
   

 
    

 

 
       

where Z and T are the spatial and time variables respectively, 
R(T,Z) is the vessel radius, A(T,Z) is the cross-sectional area 
of the vessel, Q(T,Z) is the blood flow, P(T,Z) is the blood 

pressure,  is blood density and  is the momentum-flux 
correction coefficient. The subscript T or Z indicates time or 
spatial derivative. Furthermore, the motion of the wall 
satisfies: 

  
      

  
            

  

  
  

where w is the wall density, Pe is the pressure outside the 

tube, h0 the wall thickness, R0 the mean radius and  the 
extending stress in tangential direction. 

This system is completed by modeling the local 
compliance of the vessels, a state equation: 

    
  

   
  

where A=A-A0, with A0 the cross sectional area at rest, and 
E the coefficient of elasticity. 

Applying a singular perturbation technique to the above 
equations, ABP can be represented as a KdVE as follows [6], 
[14]: 

                         

where the equation coefficients are defined by: 
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and the constant    √
   

    
 determines the typical Moens-

Korteweg velocity of a wave propagating in an elastic tube, 
when all nonlinear terms are neglected. 

Equation (5) admits a multi-soliton solution [13]. 
Particularly the 2-soliton analytical solution can be expressed 
as: 
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B. Numerical Scheme 

Computer simulations of solitons propagation and their 
interaction result in an elevated computational cost. 
Therefore, spectral and pseudospectral numerical schemes 
are recommended in the numerical integration of the KdVE 
[15]. In this sense, appropriate methods for this numerical 
integration were discussed in [16], where the exponential 

time differencing (ETD) method with a 4
th

 order Runge-
Kutta (ETDRK4) emerged as the best option [17], [18]. 

The ETD method proposed by [17] is defined as follows. 
If the equation (5) is written as 

                 (6) 

where L is a linear operator and N is a nonlinear operator, 
with periodic boundary conditions. Applying the Fourier 
transform to (6), and then multiplying by      

     
                  . (7) 

If a change of variables is performed: 

               
         (8)

replacing (8) in (7) 

             . (9) 

Discretizing (9) in time and performing the integration over a 

single time step (t), the following expression is obtained 

             ∫                      
  

 
 (10) 

where t is the time step for the numerical integration. The 
expression (10) is exact, and the various order ETD schemes 
arise from the manner in which this integral is solved. In the 
present work, in order to have the best approximation [16]the 
integral in (10) was approximated by a fourth order Runge 
Kutta as stated in [16]. 

III. NUMERICAL EXPERIMENTS 

In order to characterize the pressure pulse propagation, a 

discrete multi-segmented conduit was proposed. Arterial 

wall mechanical parameters were obtained from existing 

literature [19] and assigned to each individual segment. The 

numerical model was developed starting at the aortic arch, 

and ending at the femoral artery (Table I). Gravitatory 

effects were neglected assuming supine position. Aortic 

pressure waveform was described using a two-soliton 

solution as initial condition. For a continuity solution, the 

output state of each simulated segment was used as the initial 

condition of the next. Additionally, the influence of the 

presence of bifurcations was considered as a small loss of 

pressure at the end of each conduit [20].  

Due to wall thickness, vessel radius and elasticity variations, 

maximum values of velocity and pressure are expected to be 

modified as can be observed in arterial tree. Another 

phenomenon to be evaluated is the separation of the two 

initial solitons due to the difference in their velocities. 

 

TABLE I.  SEGMENTS 

Segment 
Length 

L (cm) 

Radius 

R (cm) 

Wall 

Thickness 

h (cm) 

E x10
6
 

dyn/cm
2
 

Aortic Arch 3.9 1.07 0.127 4 

Thoracic Aorta 5.2 1.00 0.120 4 

Thoracic Aorta 5.2 0.95 0.116 4 

Thoracic Aorta 5.2 0.95 0.116 4 
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Segment 
Length 

L (cm) 

Radius 

R (cm) 

Wall 

Thickness 

h (cm) 

E x10
6
 

dyn/cm
2
 

Abdominal Aorta 5.3 0.87 0.108 4 

Abdominal Aorta 5.3 0.57 0.080 4 

Abdominal Aorta 5.3 0.57 0.080 4 

Common Iliac 5.8 0.52 0.076 4 

External Iliac 8.3 0.29 0.055 4 

External Iliac 6.1 0.27 0.053 4 

Femoral Artery 12.7 0.24 0.050 8 

Values taken from [19] 

IV. RESULTS 

The two-soliton analytical solution used as the initial 

condition for the numerical modeling can be observed in 

Figure 1 resembling a typical pressure waveform at the aortic 

arch. 

 
Figure 1. Pressure initial condition for simulations (Aortic Arch, contiuous 

line). Final state of simulation (femoral artery, dotted line). 

The simulated evolution of the pressure wave trough the 

discrete multi-segmented conduit structure (almost 70 cm of 

total length) can be seen in Figure 2. The observed 

waveforms resemble the behavior shown in [3], obtained 

from experimental data. 

As expected, peaking and steepening phenomena during the 

wave propagation were visualized (Figure 1, dotted line). 

Additionally, the separation of the solitary waves was 

verified. Three main propagation sections can be also 

differentiated. The first one from thoracic to abdominal aorta 

(approx. 25cm), the second, from abdominal aorta to iliac 

artery (approx. 40cm) and the last one, from iliac to femoral 

arteries. For each section, the relationship between the vessel 

radius and the wall thickness remained almost constant. 

Finally, the foot to foot difference between simulated aortic 

and femoral waves was assessed in 0.12s for the entire 

conduit of 68.3cm. The obtained mean pulse wave velocity 

corresponds to 5.69m/s, which is in agreement with 

physiological ranges [19]. 

 

 
Figure 2. Pressure waveform traveling from the heart to femoral artery 

V. DISCUSSION 

In the present work, ABP propagation trough the arterial tree 

was numerically simulated by a nonlinear dynamical system. 

For this purpose, a quasi 1D model of the Navier Stokes 

equation for the boundary layer of a thin nonlinear tube of 

elastic wall was implemented. A discrete multi-segmented 

conduit was proposed, where the obtained KdVE was 

numerically integrated for each segment with specific values 

of wall thickness, elasticity and vessel radius. Obtained 

results showed a waveform behavior (peaking and 

steepening phenomena) that can be compared to 

experimental data [3]. In this sense, the assumption that the 

pressure wave may be represented as a combination of 

solitons constitutes an interesting approach. Taking into 

account that the cardiac muscle exhibits low mechanical 

efficiency values [21], and considering that the 

cardiovascular system constitutes a highly complex 

structure, the presence of solitons waves seems to be a 

natural choice for the propagation phenomena. 

The main property of the developed model is that it allows 

the evaluation of regime transitions (changes in structure) 

between contiguous segments, which cannot be obtained by 

means of the analytical solution alone. Moreover, complex 

multi-soliton solutions can be implemented [13] in a simple 

manner. Furthermore, structural changes in arterial wall 

mechanics as a consequence of aging or the presence of a 

vascular disease (such as atherosclerosis) could be analyzed. 

VI. CONCLUSION 

In the present study, a conceptual model of arterial tree 

based on solitons by compartments was proposed, where 

ABP propagation phenomenon was quantitatively 

reproduced. 

Further studies are needed in order to improve the 

complexity of the model where other physiological and 

structural parameters could be considered. 
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