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Abstract— This paper presents a cost-effective adaptive 

feedback Active Noise Control (FANC) method for controlling 

functional Magnetic Resonance Imaging (fMRI) acoustic noise 

by decomposing it into dominant periodic components and 

residual random components. Periodicity of fMRI acoustic noise 

is exploited by using linear prediction (LP) filtering to achieve 

signal decomposition. A hybrid combination of adaptive filters-

Recursive Least Squares (RLS) and Normalized Least Mean 

Squares (NLMS) are then used to effectively control each 

component separately. Performance of the proposed FANC 

system is analyzed and Noise attenuation levels (NAL) up to 

32.27dB obtained by simulation are presented which confirm the 

effectiveness of the proposed FANC method.  

I. INTRODUCTION 

ANC is based on the principle of ‘acoustic’ superposition 
of a noise signal and a synthetically generated ‘anti-noise’ 
signal of same amplitude and exactly opposite phase, using 
appropriate adaptive algorithms, to achieve maximum 
attenuation of noise in particular zone of interest, in real time. 
The term “FANC” refers to an ANC system in which no 
reference microphone is used to measure source noise signal 
directly, instead the noise signal is estimated from the error 
microphone placed in target zone. The acoustic noise 
generated in an MRI bore cavity is a source of discomfort for 
the patient and gives rise to negative psychological effects. 
Moreover, the acoustic noise interferes with the fMRI images 
by stimulating unwanted part of the brain and resulting in 
spurious images [1] [2]. Hence, control of MRI/fMRI acoustic 
noise has been a topic of constant interest for researchers and 
has been pursued in this paper. 

It is well known that fMRI acoustic noise, using Echo 
Planner Imaging (EPI) technique, exhibits periodic structure 
[2] [6] by virtue of rapidly switched magnetic gradient currents 
in the scanning coils. This paper proposes the use of the 
periodic nature of fMRI noise to isolate the dominant periodic 
components and the residual components of fMRI acoustic 
noise, with the help of linear prediction (LP) filtering. As 
described in [3], Wold decomposition theorem suggests that 
all stochastic processes can be decomposed into a predictable 
process and another stochastic process. Hence, by employing 
the above decomposition theorem, it is suggested to first 
decompose the fMRI acoustic noise into periodic (therefore, 
predictable) part and the random part. LP coefficients are 
utilized to estimate the dominant frequency components – their 
individual amplitudes, frequencies and phases, which are then 
used to estimate and separate the tones from the fMRI signal. 
LP filtering is an easy and computationally efficient method 
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for spectrum estimation as compared to other methods as 
mentioned in [9]. Once the MRI/fMRI noise has been 
decomposed, we can separate the ANC adaptive algorithms to 
control each component separately and effectively. In [2], a 
FANC method is introduced to reduce the acoustic noise 
during MRI/fMRI scan in which an error microphone reads the 
noise signal near the patient’s ears and is processed using 
adaptive Normalized Least Mean Square (NLMS) algorithms 
in order to achieve a quiet zone with 20.29 dB NAL near the 
patient’s ears inside the MRI bore.  

In this paper, we use FANC architecture and hybrid 
adaptive algorithms, different from those used in [2]. FANC 
architecture is chosen because: (1) It is cost-effective since 
only error microphone is required and the reference 
microphone to measure the source noise directly and its 
associated electronics are not needed, (2) It is good where the 
source noise is of distributed nature. FANC architectures are 
capable of controlling noise isotropically, i.e. does not depend 
on the noise source location/direction, thus good for 
distributed noise source, such as inside fMRI bore [5]. In 
contrast to the method in [2], we propose here the use of 
parallel combination of cascaded RLS (Recursive Least 
Square) and NLMS adaptive filters to control each part. 
Hybrid RLS-NLMS combination is shown to perform very 
well for fMRI noise in [4]. RLS algorithm has faster 
convergence, but higher mean square error (MSE) as 
compared to NLMS algorithm. NLMS has slower 
convergence, with smaller MSE and more performance 
stability than RLS. So we combine the benefits of both and use 
RLS to achieve faster convergence and then switch to NLMS 
to reduce the MSE, based on an error energy threshold. This 
also reduces the overall filter order greatly and favors real-time 
implementation. Furthermore, assuming linear phase 
propagation in the acoustic medium (free air), for periodic 
signals, all path delays in a linear system can be modelled by 
a phase shift and a gain change. Hence, we do not use any 
secondary path estimation in our ANC system approach, 
avoiding unnecessary mathematical involvement.                                     
Thus, the objective of this paper is: (1) To propose the use of 
LP filtering to decompose the fMRI noise into a signal with 
dominant periodic components followed by a NLMS stage for 
synchronization and a random signal; (2) To propose the 
effective control of both signals separately using two pairs of 
RLS-NLMS combinations; (3) To implement the complete 
proposed method on a FANC architecture to reduce 
implementation cost and obtain better performance, in terms 
of NAL.   
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II. METHOD USED 

As illustrated in Fig. 1, the proposed technique for 
controlling the fMRI acoustic noise is divided into following 
sequential operations: (1) Signal decomposition (2) Signal 
Synchronization and a NLMS stage (3) Active noise control 
using combinations of RLS-NLMS adaptive algorithms. The 
entire operation is performed on a FANC architecture, which 
means we have access to only the error signal from 
microphone,  𝑒𝑠(𝑛). Since we do not have access to the 
reference noise, it is the task of the adaptive algorithm to 
estimate the reference noise using only the error signal, which 
make the adaptive FANC systems more complex and 
computationally challenging for real-time implementation.  

A. Decomposition of fMRI acoustic noise using the error 

microphone signal  

The quasi-periodicity of fMRI acoustic noise has been 

confirmed in [6], [7].The first operation on the noisy input 

error signal is temporal feature analysis, wherein we find the 

autocorrelation sequence on suitable length of data samples. 

This allows us to determine the period of the input error 

signal 𝑁 by virtue of periodicity property of autocorrelation 

sequence for periodic signal.  

Consider an error signal sequence 𝑒(𝑛) of the form:                           

𝑒𝑠(𝑛) = 𝑒𝑝(𝑛) + 𝑒𝑤(𝑛) where 𝑒𝑝(𝑛) is periodic sequence in 

time with unknown fundamental period of 𝑁  samples, and  

𝑒𝑤(𝑛)  represents a zero mean additive white random noise 

interference, such that for 𝑛 ≥0 

 𝑒𝑝(𝑛) = 𝑒𝑝(𝑛 + 𝑘𝑁), 𝑘 = 0,1,2, …                  (1) 

Then its autocorrelation sequence, 𝑟𝑝𝑝(𝑙) is also periodic in 

time with fundamental period,  𝑁: 

                  𝑟𝑝𝑝(𝑙) =
1

𝑁
∑ 𝑒𝑝(𝑛)𝑒𝑝(𝑛 − 𝑙)𝑁−1

𝑛=0                            (2) 

and,                    𝑟𝑝𝑝(𝑙) = 𝑟𝑝𝑝(𝑙 + 𝑘𝑁)                                (3) 

Then,       𝑟𝑠𝑠 (𝑙) = 𝑟𝑠𝑠(𝑙 + 𝑘𝑁) + )( 2 lw                         (4) 

Where  2
w is the variance of the white random noise )(nw , 

and 𝛿(𝑙) = 1, for 𝑙 = 0 and 𝛿(𝑙) = 0, for 𝑙 ≠ 0. 

Then we use the period 𝑁 as the order of the linear prediction 

(LP) filter, to estimate the frequency content, in the next step. 

The whole idea behind signal decomposition is to estimate the 

spectral components present in the fMRI noise signal and 

separate them into two parts: one with dominant frequency 

components and the other with residual frequency components 

(see Fig.1). Let 𝑒𝑠(𝑛) denote the input fMRI noise signal from 

the error microphone. After finding the period, the next step is 

spectral feature estimation, where we obtain the LP 

coefficients for estimating 𝑒𝑝(𝑛). Although there are several 

methods to select the order of LP filter [9], for periodic signals, 

it seems a reasonable assumption to select the order of LP 

(say 𝑃) equal to period, 𝑁 of the signal. Fig. 2 shows the 

variation of LP error energy with order of LP filter (when the 

fMRI acoustic noise is obtained from a 3T Siemens scanner 

running EPI sequences with 30 slices per 2 Seconds as 

discussed in Simulation section). Notice that after 𝑃 ≈ 800, 

the error energy almost stays constant justifying P ≈ 𝑁.  Of 

course, higher the value of  𝑃 , lower the prediction error and 

better the spectral estimation. Coefficients 𝑎𝑃(𝑘) specify the 

prediction error filter 𝐴𝑝(𝑧) = 1 + ∑ 𝑎𝑃(𝑘) 𝑧−𝑘𝑃
𝑘=1 . Estimate 

of 𝑒𝑝(𝑛)  in terms of individual frequencies , 𝜔𝑘 , and their 

corresponding amplitudes, 𝐴𝑘, and phases , ∅𝑘  , are obtained 

by finding the peaks of the magnitude spectrum of 1/𝐴𝑝(𝑧). 

Although, the individual frequencies and amplitudes are 

sufficiently accurate, their phases are not. The dominant 

periodic part of 𝑒𝑠(𝑛) is regenerated using 

𝑒𝑝
′ (𝑛)=∑ 𝐴𝑘  𝑐𝑜𝑠 (𝜔𝑘𝑛 + 𝜑𝑘)𝑖 , 𝑛≥0. The signal 

Figure 1. Schematic diagram of the proposed FANC with signal decomposition and Hybrid RLS-NLMS 
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Figure 2. Variation of LP error energy with order of LP filter for 
fMRI acoustic noise. Period =800. 
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decomposition is finally completed by employing a dedicated 

NLMS adaptive filter which tries to synchronize the phase of 

𝑒𝑝
′ (𝑛) with 𝑒𝑠(𝑛). It also does ‘fine-tunes’ the amplitude, 

phase and frequency estimates. The outputs of the NLMS stage 

are estimates of the periodic part and the random part 𝑒𝑤
′ (𝑛) of 

acoustic noise. The equations describing the RLS and NLMS 

adaptive filters are presented in the next section. 

 B. Parallel FANC Hybrid Adaptive Filters 

Depending on the noise signal, like fMRI noise, using a single 

NLMS-based adaptive FIR (Finite Impulse Response) filter in 

FANC requires large filter length to achieve appreciable 

NAL. However, once the input noise signal has been 

separated into periodic and random parts, using two separate 

adaptive filters, one for each part, to generate final anti-noise 

signal can result in lower overall filter lengths, higher system 

performance, and higher total NAL [8]. For each part in the 

proposed method, a dedicated pair of RLS-NLMS 

combination is used to generate anti-noise signal, as shown in 

Fig. 1. The inspiration of using cascaded RLS-NLMS filters 

in ANC is drawn from [6]. Here, we use the rate of change of 

error energy as a threshold to switch from adaptive RLS 

algorithm to adaptive NLMS algorithm in FANC system. This 

switching criterion is given in (5).  𝑒𝑜 is the threshold below 

which the FANC switches to NLMS algorithm, which is 

determined empirically based on many experimental runs. 

                     | 𝑑

𝑑𝑛
 ∑ (𝑒𝑠(𝑛))2𝑁−1

𝑛=0 |  >

<𝑁𝐿𝑀𝑆

𝑅𝐿𝑆
 𝑒𝑜                       (5) 

The threshold criterion also ensures that the FANC does not 

diverge, by switching back and forth between RLS and 

NLMS to ensure proper reduction in error energy. Using the 

RLS algorithm, only the first L weights are updated.  

Usually,  𝐿 < 𝑀. After the threshold condition in (5) is 

satisfied, we switch to NLMS and update all (L+M) filter 

weights using NLMS. 

                       [𝒘(𝑛)]𝐿x1 = [𝑤(0) 𝑤(1) … 𝑤(𝐿 − 1)]𝑇                  (6) 

                [𝒘(𝑛)](𝐿+𝑀)x1 = [𝑤(0) 𝑤(1) … 𝑤(𝐿 + 𝑀 − 1)]𝑇         (7)                          
 

RLS equations: 

                        𝑃(0) = δ−1[I ]𝐿×𝐿                                            (8) 

                       𝝂(𝑛) =  𝐏(𝑛 − 1)𝒙(𝑛)                                     (9) 

                      𝒌(n) =  
𝛎(n)

[(λ+ 𝒙𝑻(n) 𝛎(n) ] 
                                     (10) 

       [𝒘(n)]L×1  =  [𝒘(n − 1)]𝐿 x 1 +  𝒌(n)𝑒𝑠(n)               (11) 

      𝑷(n)  =  λ−1𝑷(n − 1) − λ−1𝒌(n)𝒙𝑻(n)𝑷(n − 1)         (12) 

Where 𝑃(0) initializes the L×L signal correlation matrix 
inverse 𝑃(n). I is the identity matrix, and δ is a small positive 
constant for high SNR or a large constant for low SNR. ν(n) 
and k(n) are dummy variables, and λ is a forgetting factor. 
 

NLMS Equation: 

    [𝒘(𝑛 + 1)](𝑳+𝑴)×𝟏 = [ 𝒘(𝑛)](𝑳+𝑴)×𝟏 +
𝜇 𝒙(𝑛)𝑒𝑠(𝑛)

||𝒙(𝑛)||𝟐+𝜀
      (13) 

                  𝑦(𝑛) = ∑ 𝒘𝑙(𝑛)𝒙(𝑛 − 𝑙)𝐿+𝑀−1
𝑙=0                           (14)  

where µ is the step size and  ε is a small positive constant to 
prevent division by zero. The weights obtained from (13) are 
used to produce anti-noise signals 𝑦𝑝(𝑛) and 𝑦𝑤(𝑛)for each 

pair of RLS-NLMS adaptive filters, which are combined and 
used as the anti-noise for the proposed FANC. 

C. Performance Metric: Noise Attenuation Level (NAL) 

In this paper, the measure NAL (dB) is calculated as 
follows: 

                    NAL(dB) = 10 ∗ log10[
||𝑥(𝑛)||

2

||𝑒𝑠(𝑛)||
2]                             (15) 

In (16),  ||𝑥(𝑛)||
2
represents the power of the noise signal 

(before attenuation) and ||𝑒𝑠(𝑛)||
2
 represents the power of the 

error signal after attenuation.  Conversion from NAL (dB) to 
SPL (dB) is given in [4]. 

II. EXPERIMENTAL EVALUATION 

To test the performance of the proposed FANC system, 

several experiments were performed. The performance was 

compared to traditional FANC on the basis of rate of 

convergence, NAL and overall filter order. Sampling rate was 

fixed at 16 kHz and 10 seconds of data was analyzed. 

A.  Simulation Results 

The magnitude spectrum of fMRI noise reveals that most 
significant frequencies are within the frequency bandwidth of  
1 to 8 kHz. To ensure proper working of the proposed FANC, 
we first use recorded signals that are sum of sinusoids with 
several frequencies ranging from 1 to 8 kHz to evaluate the 
performance of the system. Then fMRI acoustic noise data 
measured from a 3T Siemens scanner running EPI sequences 
with 30 slices per 2 seconds are used. An initialization phase 
of the method includes determination of period followed by 
the synthesis of the dominant periodic components of the input 
fMRI noise signal, over a data length of 1 second. The rest of 
the data is used for signal synchronization and noise 
cancellation. 
 To illustrate the signal decomposition, Fig.3 shows the 
magnitude spectrum of input fMRI error signal, 𝑒𝑠(𝑛), its 
periodic part and random part at low SNR .Table 1 shows the 
simulation NAL results obtained for recorded signals and 
fMRI data. For fMRI, the proposed method shows impressive 
NAL value even at a very small filter order for RLS-NLMS 
filter combination. The reduction in filter order directly relates 
to the reduction in computational complexity, and therefore 
favors real-time implementation. Fig.4 shows the comparison 
of rate of convergence for traditional FANC with NLMS only, 
RLS only and the proposed hybrid FANC algorithm for fMRI 
acoustic noise. Rate of convergence of NLMS alone is very 
slow compared to RLS only. But the MSE for NLMS is much 
lesser as compared to RLS. The proposed method has the 

TABLE I.  NOISE ATTENUATION LEVELS FOR SIMULATION 

Input Signal 

frequencies 

(Hz) 

Noise Attenuation Level(NAL) in dB 

SNR 

(dB) 

NLMS only 
Order=1024 

RLS only 
Order=256 

Proposed 

method* 

1k,2k,3k,4k,5k

,6k 
0 5.0051 14.2261 22.2759 

10 8.5223 10.4921 26.0147 

20 17.7318 17.6084 35.6385 

1k,2k,3k,4k,5k

,6k,7k,8k 
0 5.7385 22.0351 23.1199 

10 8.7922 13.8141 19.8281 

20 17.4576 18.3504 28.3558 

1k,1.1k,1.2k,1.

3k,1.4k,1.5k 
0 5.5242 24.3396 23.2957 

10 9.0379 15.5735 26.3624 

20 17.9992 19.0957 37.6655 

fMRI 18.2774 18.8499 32.2738 

*For proposed method, 256<Overall Order<512, µ=0.01 
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 benefits of both: Lower MSE and faster convergence. Figure 
5 shows the magnitude spectrum of the fMRI noise before and 
after attenuation using the proposed FANC method, for 1000 
samples. Also notice that the dominant peaks of the fMRI 
noise spectrum are attenuated much better and the resulting 
spectrum after attenuation has lower peaks, which would lead 
to an appreciable perceptual attenuation and a good overall 
NAL value. 

III. CONCLUSION 

In this paper, an improvement over the traditional ANC 

techniques is presented for reducing fMRI acoustic noise. We 

exploit the periodicity of fMRI noise to decompose it into 

dominant periodic component and a random component. Then 

a feedback ANC architecture is introduced which consists of 

two pairs of NLMS-RLS adaptive algorithms to generate anti-

noise signals for each component of noise separately.  This 

approach favors a cost-effective and computationally efficient 

method to attenuate the broadband acoustic noise of fMRI. The 

proposed method is simulated for different multi-tones under 

different SNR values and for recoded actual fMRI acoustic 

data. 32.27 dB NAL is obtained for fMRI noise with 

sufficiently low filter orders. Advantages of FANC 

architecture were discussed for dealing with distributed noise 

source and lowering the system cost, yet achieving good noise 

attenuation by using the proposed parallel implementation of 

adaptive ANC algorithms. 
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Figure 5.Magnitude Spectrum of fMRI acoustic noise before 

attenaution (blue line) and after attenuation (green line) using 
proposed FANC method.  
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Figure.4.Comparison of convergence for traditional FANC with NLMS 

only(in blue), RLS only(in green) and the proposed hybrid FANC 

algorithm with signal decomposition(in red). 
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Fig.3. Magnitude spectrum of (a) Input noisy error,(b)Estimated 

Periodic part and (c)Random part for fMRI acoustic noise. 

0 1000 2000 3000 4000 5000 6000 7000 8000
-140

-120

-100

-80

-60

-40

-20

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

0 1000 2000 3000 4000 5000 6000 7000 8000
-140

-120

-100

-80

-60

-40

-20

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

0 1000 2000 3000 4000 5000 6000 7000 8000
-140

-120

-100

-80

-60

-40

-20

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

(a) 

(b) 

(c) 

3223


