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Abstract— In this work we present a decision support tool 

for the calculation of time-dependent survival probability for 

patients after ventricular assist device implantation. Two 

different models have been developed, a short term one which 

predicts survival for the first three months and a long term one 

that predicts survival for one year after implantation. In order 

to model the time dependencies between the different time 

slices of the problem, a dynamic Bayesian network (DBN) 

approach has been employed. DBNs order to capture the 

temporal events of the patient disease and the temporal data 

availability. High accuracy results have been reported for both 

models. The short and long term DBNs reached an accuracy of 

96.97% and 93.55% respectively. 

I. INTRODUCTION 

eart failure (HF) is a disease that affects millions of 

people in the Western societies with high rates of 

incidence and prevalence. During the last years 

Ventricular assist devices have become a valuable option for 

patients with end-stage heart failure, no longer responding to 

medical therapies. A population of patients that in the past 

could only be treated with a heart transplantation. However, 

several complications persist during VAD support (mainly 

left-VAD/LVAD) due to pre-existing effects of advanced 

heart failure, the requirement of extensive surgery to implant 

the device and the effects of VAD in compromised patients 

[1]. As patient selection and timing are considered as 

primary determinants of the success of VAD implantation, 

the use of models and tools that can assess patient status and 

the risk of adverse events/death can conduce to increased 

success of LVAD therapy.  

For VAD treated patients, several risk scores and assessment 

tools have been presented in the literature. The Heart Failure 
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Survival Score (HFSS) [2] and the Seattle Heart Failure 

Model (SHFM) [3] have been proposed for patient selection 

for LVAD support based on the estimation for expected 

survival during the next 1 to 3 years. In a similar way, the 

Randomized Evaluation of Mechanical Assistance in 

Treatment of Chronic Heart Failure trial (REMATCH) [4] 

stratifies patient into risk groups. The Interagency Registry 

for Mechanically Assisted Circulatory Support 

(INTERMACS) [5] has been used for patient classification 

in risk groups, interval analysis [6], and timing of implant 

assessment [7]. Also, patient classification regarding the risk 

of developing other diseases (multi-organ failures) when 

undergoing LVAD implantation has been addressed with the 

Model for End-Stage Liver Disease (MELD) [8] without 

being specific for LVAD patients. Additional analyses of 

predictors and mortality risk scores can be found in [9-14]. 

Recently, an adverse event prediction approach based on 

data mining methods has been presented [15]. Still, the 

above approaches are based mostly on pre-operative patient 

data and do not capture the dynamic nature of patient 

manifestations/clinical history after implantation.  

In this work, we present a decision support tool that 

predicts the survival probabilities of patients after VAD 

transplantation at specific time intervals. Such a tool can be 

a valuable assistant in patient selection and the design of 

treatment plan. The methodology used to develop the tool is 

based on dynamic Bayesian networks. The proposed 

approach goes beyond the state of the art since it 

encompasses temporal information from the different stages 

of the patient, after VAD implantation.  

II. MATERIALS AND METHODS 

A. Formulation of the time dependent problem  

In order to appropriately model the target problem of 

calculating the survival probability  at specific time points 

after LVAD implantation (namely at 1 month, 2 months,  3 

months, 6 months, 9 months and 12 months), the 

methodology of dynamic Bayesian networks (DBNs) was 

selected. DBNs [16] can  model temporal dependencies and 

therefore are an appropriate choice of modeling survival 

after the implantation. They can capture the dynamics of 

patient disease by taking into account the post-operative data 

and their evolution during the follow-up period after 

implantation. DBNs have been used in several domains [17-

21]. In order to apply the DBNs, the patient features/ 

measurements are used as input at each time slice. Through 

DBN modelling we can identify the most important of them 
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Figure 1: The architecture of the short term Dynamic Bayesian Network used in our application. 

 
Figure 2: The architecture of the longer term Dynamic Bayesian Network used in our application. 

 

which are related to the survival of the patient. Two different 

types of DBNs have been developed: (i) a short term one to 

model the dependencies for the first three months after 

implantation when patient’s situation is less stable (with 

time points at one day, one month, two months and three 

months after the implantation) and (ii) and a long term DBN 

for modeling the dependencies for  the period from month 3 

to month 12 after the implantation (with time points at 

months 3, 6, 9 and 12) The concept of the two DBNs is 

shown in Figs. 1 and 2, respectively. A Bayesian Network 

(BN) is a directed acyclic graph, where each node is one of 

the features. For a network described as B=(G,P), where G 

is a directed acyclic graph, 
1 2

{ , , ..., }
N

x x xX , is a set of 

features, and P is the joint probability distribution of features 

in X, as follows: 
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where πG(x) denotes the parents of x in G. A DBN is defined 

as a pair DB=(B0,Btrans), where B0 is a BN, defining the prior 

P(X0) and Btrans is a two-slice temporal BN which defines 

P(Xt|Xt-1). The semantics of a DBN can be defined using the 

2 slice temporal BN, in all time-slices. The resulting joint 

distribution is given by: 
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Our aim is to use the training data in order to define the 

architecture of the network, which means to identify the 

dependencies between the features within each time slice 

(inter-dependencies) as well as across the different time 

slices (intra-dependencies). Two different algorithms were 

employed, the Bayesian Search and the PC algorithm [22], 

for searching across the feature space and identification of 

the optimal network architecture that provides the highest 

accuracy. The first task is to identify all dependencies 

among the features of the network and after that, to provide 

evidence to the trained network and conjecture about the 

value each feature in the network in the next post operation 

phase time slices. Due to the transparent architecture of the 

DBNs, we are able to identify new information regarding the 

correlation of the features with the patient survival 

probability and thus the underlying processes that take place 

after the VAD implantation. From the set of resulting DBN 

architectures, we are also able to identify the optimal set of 

features, both from the pre-operation features, as well as, in 

each time slice after the implantation/operation. 

B. Dataset 

The dataset for training and evaluating the DBN 

methodology has been provided by Katholieke Universiteit 

of Leuven, Belgium. The dataset contains 71 patients, with 

41 pre-operative features and 9 features in every post-

operation time slice. Patients were followed for an up to 12 

month period after implantation unless they died. Patients 

that had a heart transplant, or at their latest measurement 

were alive or had a VAD explantation were considered as 

patients that survived at the specific time slice of the 

measurements of one of the above mentioned events. Out of 

the 71 patients, 53 died within the 12 month period. The 41 

pre-operative features are shown in Table I, with their mean 

(or median) and their standard deviation. These features take 

into consideration medical literature on pre-operative risk 

factors for VAD patients (see e.g [23]). The post-operative 

features, are shown in Table II.  

 

III. RESULTS 

In order to evaluate our methodology, due to the limited 

sample size, 10-fold cross validation method was employed. 

In addition, the evaluation is also extended to predict the 
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TABLE I: PRE-OPERATIVE FEATURES 

Feature Units mean  ± std 
Age (yrs) years 48.07 ± 14.82 

Gender - 14F, 57 M 

BSA body surface area m2 1.89±0.21 

BMI body mass index Kg/ m2 24.53±3.52 

In Hospital Prior to 

Implant? 

Inpatient/ 

outpatient 

11 Oupatinet 

60 inpatient 

HF heart failure Etiology 
Ischemic/ dilated 

cardiomyopathy 

35 Isch 

36 DCM 

Inotropes Yes/no 51 yes, 16 No 

PCWP pulmonary 

capillary wedge pressure 
mmHg 28.11±7.29 

PAP (S) pulmonary artery 

pressure (systolic) 
mmHg 49.66±13.59 

PAP (D) pulmonary artery 

pressure (diastolic) 
mmHg 29.32±7.22 

PAP (M) pulmonary 

artery pressure (mean) 
mmHg 36.04±8.71 

RVP right ventricular 

pressure 
mmHg 50.85±13.22 

RAP right atrial pressure mmHg 16.47±7.32 

MAP mean arterial 

pressure 
mmHg 71.16±11.10 

CO cardiac output L/min 3.51±1.12 

CI cardiac index L/min/ m2 1.82±0.52 

SVR systemic vascular 

resistance 

dyn·s/cm5 

 

1389.92±463.

19 

PVR pulmonary vascular 

resistance 

dyn·s/cm5 

 
2.95±1.72 

CP Cardiac Power W 0.56±0.21 

CPI Cardiac Power Index W/ m2 0.29±0.10 

HR heart rate Beats per minute 87.81±21.18 

BP (S) blood pressure 

(systolic) 
mmHg 92.10±18.98 

BP (D) blood pressure 

(diastolic) 
mmHg 59.98±10.46 

LVEF left ventricular 

ejection fraction 
% 17.93±7.00 

LVEDD left ventricular 

end-diastolic diameter 
mm 62.12±8.38 

BNP NT-proBNP level ng/L 74.35±36.64 

Hb Hemoglobin g/dL 11.23±2.54 

WBC white blood cell 

count 
109 /L 9.84±4.79 

PC Platelet Count 109 /L 193.10±89.15 

AST IU/L 240.2±570.7 

ALT IU/L 202.8±461. 4 

LDH IU/L 
1130.92±142

8.62 

T. Bilirubin Total 

bilirubin level 
mg/L 1.63±1.48 

Na Sodium mmol/L 135.06±8.30 

BUN blood urea nitrogen mg/dL 76.51±42.59 

Creatinine mg/L 1.52±0.86 

Creatinine Clearance ml/min 62.08±32.21 

CRP C-reactive protein mg/L 74.54±97.31 

POD Transfer to Ward 

post operative day 
days 19.80±17.00 

POD Discharge (Days) days 35.96±26.27 

INTERMACS Profile  

13 (1), 23 (2), 

20 (3), 13 (4), 

2 (5) 

 

TABLE II: POST-OPERATIVE FEATURES  

Feature Units 
NT-proBNP Ng/L 

C-reactive protein g/dL 
Leukocytes 109 /L 
Creatinine mg/dL 

Urea mg/dL 
Sodium mmol/L 

Bilirubine total  mg/L 
AST IU/L 
ALT IU/L 

 

next time slice condition, based on the previous conditions 

(either t-1, or t-1+t-2 etc until t-1+t-2+…+t-n). In this case 

we provide evidence to the model for the respective time 

slice(s) and evaluate the model in the prediction of the next 

time slices.      

Below we present the DBN developed for the survival 

after VAD implantation problem. The short and long term 

DBN (their structure is the same) that take into consideration 

also the pre-operative data is shown in Fig. 3. Although the 

two DBNs share the same structure, estimated parameters 

(probabilities) differ in each case. The corresponding 

accuracy results for the short and long term DBNs are shown 

in the Tables III and IV. Accuracy is computed as number of 

correctly identified events (predictions) divided to the total 

number of predictions. Having available data for previous 

time slices the table presents the prediction accuracy for the 

following time slice (in terms of survival). 
 

TABLE III: ACCURACY RESULTS FOR THE SHORT TERM DBN 

 
1T 2T 3T 4T 

Data 0 T  74.65% 67.65% 68.18% 50.77% 

Data 1 T - 91.18% 89.39% 69.23% 

Data 2 T - - 96.97% 70.77% 

Data 3 T - - - 70.77% 

Where 0T denotes pre-op data, 1T denotes the time slice 

in the first day after the operation, the 2T the time slice after 

30 days of the operation, the 3T the time slice after 60 days 

of the operation and the 4T the time slice after 90 days of the 

operation. Each result presents the respective accuracy in 

predicting the next time slice condition, based on the 

previous ones. 

 
TABLE IV: ACCURACY RESULTS FOR THE LONG TERM DBN 

 

1T 2T 3T 4T 

Data 0 T  74.65% 64.71% 34.78% 93.55% 

Data 1 T - 72.55% 56.52% 93.55% 

Data 2 T - - 78.26% 93.55% 

Data 3 T - - - 74.19% 

In Table IV, 0T denotes pre-op data, 1T denotes the time 

slice in the first day after the operation, the 2T the time slice 

after 3 months of the operation, the 3T the time slice after 6 

months of the operation and the 4T the time slice after 9 

months of the operation.  

 

IV. DISCUSSION 

We have presented a novel approach for the prediction of 

survival probability of patients at specific time points after 

ventricular assist device implantation. Our approach is based 

on Dynamic Bayesian Networks. DBNs model the 
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Figure 3: The Dynamic Bayesian Networks developed for the short and long term survival prediction 

dependencies between the data and provide an insight to the 

survival process. The accuracy results shown in Tables III 

and IV present some differences in accuracy, in relation to 

the available input. When more information is used as input 

the accuracy for the next time slice is improved. 

Future work will focus on two different directions. The first 

one refers to the extension of the available dataset, so as to 

train and test the developed DBNs with higher number of 

patient cases. The second direction will focus extended 

discussion with cardiologists and cardiosurgeons so as to 

incorporate the developed models in the clinical practice. 

Moreover, after having confirmed the proof of concept of 

this approach, the next step is to perform a large scale study 

so as to provide results comparing the efficacy of our 

approach to existing prognostic scores such as HFSS and 

other time dependent methodologies, i.e. Cox regression.  
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