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Abstract— This paper proposes a computational framework
for movement quality assessment using a decision tree model
that can potentially assist a physical therapist in a telereha-
bilitation context. Using a dataset of key kinematic attributes
collected from eight stroke survivors, we demonstrate that the
framework can be reliably used for movement quality assess-
ment of a reach-to-grasp cone task, an activity commonly used
in upper extremity stroke rehabilitation therapy. The proposed
framework is capable of providing movement quality scores that
are highly correlated to the ratings provided by therapists, who
used a custom rating rubric created by rehabilitation experts.
Our hypothesis is that a decision tree model could be easily
utilized by therapists as a potential assistive tool, especially in
evaluating movement quality on a large-scale dataset collected
during unsupervised rehabilitation (e.g., training at the home),
thereby reducing the time and cost of rehabilitation treatment.

I. INTRODUCTION

Stroke is the leading cause of disability in adults leav-
ing millions disabled with chronic impairments [15], often
left untreated due to insufficient coverage by insurance
to undergo long-term rehabilitation therapy treatment. The
traditional rehabilitation treatment composed of repetitive
movement tasks under the supervision of a physical therapist
can achieve motor recovery following stroke [8], [9], [12],
[21]. To support long-term recovery, investigators in the
stroke rehabilitation community believe that clinical inter-
vention should be reinforced with home-based therapy, which
a participant can possibly experience without much therapist
supervision [1], [7], [19], and can also reduce the cost
of long-term therapy treatment. Virtual and mixed reality
environments have been incorporated in stroke rehabilitation
to induce active learning by providing auditory and visual
feedback based on automatic computational evaluations of
movement. In this direction, a Home-based Adaptive Mixed
Reality Rehabilitation (HAMRR) system (shown in Fig.
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Fig. 1: The HAMRR system used to monitor wrist and torso
movements of a stroke survivor during rehabilitation therapy. The
system uses four optitrack cameras to track the wrist and torso
movements as well as a computer and speakers to provide audio and
visual feedback during therapy treatment. In the inset, we see the
placement of wrist marker and torso rigid plate (with four reflective
markers on the corners) on a participant performing reaching tasks
to a cone.

1) which integrates rehabilitation and motor learning theo-
ries with motion capture, activity analysis and multimedia
feedback [5], [7], [10], has been shown as an effective
rehabilitation system.

Researchers have been motivated to develop frameworks
for quantification of movement quality [4], [6], [20], [22],
[24] given its potential impact on disseminating interactive
rehabilitation training to unsupervised contexts such as the
home. Several automated approaches exist in literature to
quantify movement quality based on complex models in-
cluding nonlinear dynamical system theory [18], [20], [22],
random forests [16], and SVMs [17]. While these approaches
provide a computational framework for movement quality
assessment showing high correlation with the clinical assess-
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ment scores, it would be beneficial to have an interpretable
framework which can be used as a decision support tool by
physical therapists during rehabilitation treatment.

To assess the level of functional ability of a stroke survivor,
therapists can employ validated rating rubrics such as the
Wolf Motor Function Test [23], to systematically assign
a movement quality assessment score after observing a
participant perform a predefined set of functional tasks. Such
a rubric imposes a hierarchical set of rules for a therapist
to consider, in order to help evaluate a participant’s perfor-
mance. Given this method of translating visual observation
of movement to a quantitative score, we were motivated to
investigate if a computational framework based on kinematic
features can also be structured in a hierarchical form that
can be easily understood by a therapist. We believe that
such a framework would be useful in providing recommen-
dations to physical therapists especially in the context of
telerehabilitation, where a therapist reviews large amounts
of movement performance data produced by a participant
performing rehabilitation exercises without supervision (e.g.,
in the home). Large scale movement quality evaluation would
greatly benefit from such systems by providing recommenda-
tions to therapists and also allowing them to check the reason
for recommended movement quality score using describable
attributes indicative of the impairments.

Contributions: We propose a hierarchical model using
decision trees to simulate the results of the rating rubric
created by rehabilitation experts to rate reach to grasp tasks
across stroke survivors of various deficit. This is a step
towards development of generalized models for knowledge
representation of movement quality assessment of reach and
grasp action based on previous work [10], [13], [14]. Within
this experimental framework, we assume a simplified kine-
matic representation of reach and grasp action which focuses
on a few specific elements of reach movement suitable for
real-time monitoring and quantification of movement quality.
The elements of the reaching movement chosen in our ex-
periments include hand trajectory error in the horizontal and
vertical planes, peak speed, jerkiness [6], velocity bellness
[6] and torso rotation along XYZ axes. The main goal of
this work is to learn a model that can simulate the resultant
ratings of therapists using a rating rubric for movement
quality assessment based on low-level kinematics indicative
of the participant’s impairment which can be used as a
decision support system to aid the therapist during supervised
rehabilitation therapy.

II. METHODS FOR COLLECTING KINEMATICS AND
THERAPIST RATINGS

A. Collection of Kinematics

The HAMRR system was designed to provide rehabili-
tation therapy to stroke survivors in a home-setting with
reduced supervision by a physical therapist. This system was
used as an apparatus to collect kinematics when participants
perform movement tasks without any assistance of feedback.
The HAMRR system has four Natural Point Opti-Track
cameras facing down on a table to track a single reflective

marker placed on the participant’s wrist (wrist marker) and
four markers on the corners of a rectangular rigid plate
placed on the participant’s left side of chest (Fig. 1 inset).
The selection of the wrist marker was motivated by previous
investigations indicating that the wrist trajectory as the most
informative joint with respect to analyzing reach trajectory
performance [6], [22]. In addition, we believe that it is
important to monitor the torso compensatory strategies for
efficient movement analysis.

The selection of the plate was motivated by efforts to
capture body compensation. To compensate for the lack of
extension during a reach, many stroke survivors use excessive
shoulder movement (elevation and/or protraction) and exces-
sive torso movement (flexion and/or rotation). Therefore, a
system for rehabilitation training should monitor movement
of the body to determine the extent to which a participant is
utilizing pre-stroke movement strategies to advance his/her
hand towards the target. The HAMRR system was designed
for home-based use, and the sensing apparatus worn by the
participant must be simple and easy to wear. Therefore,
we are only using a single plate worn on the chest of
the participant, which captures coarse torso movement as
opposed to both shoulder and torso movement separately.
The system is shown in Fig. 1 and detailed information of
the system design can be found in [2].

B. Therapist Rating Protocol

Stroke rehabilitation experts have standardized means for
systematically rating overall functional performance of a
defined set of tasks (relevant to activities of daily liv-
ing) included within the WMFT protocol. However, within
the stroke rehabilitation community there lacks a consen-
sus among physical therapists in defining an ontology of
component-level labels for movement quality (i.e., methods
for rating the movement components that contribute to
completion of a functional task), thereby leading to lack
of training datasets to develop algorithms for movement
quality assessment. In other words, while kinematics can
capture the component-level aspects of movement (trajectory,
compensation) which are important for evaluating movement
quality, there is not yet a corresponding rating system in
the stroke rehabilitation community for these components.
Therefore, our team has collaborated with rehabilitation
experts to introduce a new rubric for physical therapists
to rate movement quality for specific tasks trained by the
HAMRR system. Movement quality is assessed in terms
of trajectory, compensation, manipulation, transport of an
object, and release. However, we limit our focus on trajectory
and compensation in the context of reaching to grasp a
stationary cone, as these movement components have estab-
lished corresponding methods for quantifying performance
using kinematics derived from 3D positions of reflective
markers described in the section II-A. The rating rubric used
by therapists to rate trajectory and compensation is provided
in Table I. One should note that this rubric was designed
given the constraints of the therapist viewing a single camera
video of the participant while performing a task from the
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Fig. 2: A sample of video data provided to therapists to evaluate
movement quality of stroke survivors interacting with the HAMRR
system.

TABLE I: The Rating Rubric for Movement Quality Assessment
Provided to Therapists

Score Trajectory Compensation

1 Does not ever reach the
target

Demonstrates compensatory
shoulder movement with

compensatory torso movement
in more than one plane

2

Demonstrates profound
deviation from a direct

path during the reaching
phase, which may be
affected by but is not

limited to one or more of
the following secondary
factors: Synergy, Ataxia

and Spasticity

Demonstrates compensatory
shoulder movement with trunk

compensatory movement
mainly in one plane

3

Demonstrates slight
deviation (relative to how
the rater would perform
the task) from a direct

path during the reaching
phase

Demonstrates noticeable
compensatory shoulder or

trunk movement

4

The trajectory appears to
be similar to that of the

rater if he/she were
performing the task

The shoulder and trunk are
positioned in a manner similar

to the rater if he/she were
performing the task

right side (as shown in Fig. 2).

C. Data Collection

The dataset used in our experiments consists of reach-
ing tasks performed by a total of eight participants (refer
Table II for demographics) to a cone on-table located at
the participant’s midline. Each participant performed five
reaches in each of four sessions (one session per week).
These reaches were performed without any feedback from
the system or therapist unless the participant was unclear on
how to perform the task. During the task, each participant
was seated at the HAMRR system and his/her movement
was captured by the Opti-Track system. A custom designed
iPad application was also concurrently used to capture video
footage of a participant performing these tasks. These videos
were randomized across participants and sessions before they
were provided to therapists for evaluation. Therapists could
only view one video at a time and were allowed to watch

TABLE II: The Demographics of Stroke Survivors Who Participated
in Our Study

Name Age Gender Time since stroke
(in months)

# of
strokes

1 63 Male 14 1
2 69 Male 44 1
3 65 Male 31 1
4 47 Male 26 1
5 56 Male 28 1
6 49 Male 18 1
7 64 Female 6 1
8 27 Male 12 1

the videos as many times as they needed to form a decision
on the ratings. However, therapists were not allowed to
see or change responses to previous videos once they were
submitted.

Trajectory performance was rated on a scale from 1 −
4 based on the therapist’s impression of the participant’s
performance, where a 1 denotes that the participant could
not complete the task and a 4 denotes that the participant
performed the task with the same quality of performance
as the therapist if he/she were to perform it. Compensation
was rated on a scale from 1 − 4 based on the participant’s
excessive use of the shoulder and/or torso and if compensa-
tion was used in single or multiple planes of movement. A
1 denotes that the participant used both excessive shoulder
and torso movement in multiple planes of movement, while
a 4 denotes that the shoulder and trunk are positioned in a
manner similar to the therapist if he/she was performing the
task.

III. DEFINITIONS OF KINEMATIC FEATURES

The following kinematic features were extracted to quan-
tify the impairments of a participant while performing a reach
to grasp a cone task.

1) Kinematic Features from Wrist Trajectory:
a) Trajectory Error: Trajectory error is a measure of

spatial deviation of the wrist trajectory from the reference tra-
jectory. The three-dimensional positions of the wrist marker
p(t) = [x(t), y(t), z(t)], t = 0, . . . , τ were recorded from
the start of the movement to the target grasp state. The
coordinate system was rotated such that p(0) was the origin,
X − Z plane was the horizontal plane and the straight line
connecting p(0) and p(τ) lies along the new Z-axis. This
in effect re-parameterizes (after normalization) the trajec-
tory [x(t), y(t), z(t)], t = 0, . . . , τ to [x′(z), y′(z)], z =
0, . . . , 1. This re-parameterization works without introducing
significant ambiguity in our experiments due to the strong
directionality of the reach action. The Z-axis was further
quantized into N = 50 bins, thereby transforming the
trajectory to [x′(n), y′(n)], n = 0, . . . , N − 1. We now
have a vectorial representation of the trajectory suitable
for real-time comparisons. For every point in the reach
trajectory, horizontal error (Ehor) and vertical error (Evert)
were defined as

Ehor(i) = x(i)− xref (i), i = 0, . . . , N − 1 (1a)
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Evert(i) = y(i)− yref (i), i = 0, . . . , N − 1 (1b)

The horizontal trajectory error (Êhor) and vertical trajectory
error (Êver) were defined as (units in mm)

Êhor = max
0<i<N−1

(Ehor) (1c)

Êver = max
0<i<N−1

(Ever) (1d)

b) Jerkiness: The jerkiness (or smoothness) feature is
a measure of variations in the velocity profile. An ‘efficient’
reach movement should have a smooth velocity profile with
an accelerating followed by a decelerating pattern without
any jerks. Jerkiness (in m/s3) of a movement was computed
using the definition given in [6] as

J =

∫ teom

tsom

√(
d3x
dt3

)2

+

(
d3y
dt3

)2

+

(
d3z
dt3

)2

dt (2)

where x, y and z are 3-D coordinates of the participant’s
wrist trajectory. tsom is the time index corresponding to start
of the movement and teom is the time index of end of the
movement.

c) Velocity Bellness: Ideally, the velocity profile of
a reaching task should be a bell curve. Typically, stroke
survivors throw their arm towards the target and then make
fine adjustments to grasp the object. These adjustments show
up as additional phases in the speed profile. It is believed
that these occur during the deceleration phase and we use
normalized area to evaluate velocity bellness (BNA) given
by

BNA =

∫ teom
t1st

v(t)dt∫ teom
tvmax

v(t)dt
(3)

where v(t) is the instantaneous velocity, tvmax
is the time

index corresponding to maximum velocity, t1st is the end of
the first phase.

d) Peak Speed: An efficient reach movement is typ-
ically accomplished by a hand velocity between 0.4m/s
and 0.6m/s. We use peak speed (in m/s) as a measure
of deviation from this ideal range defined as the maximum
velocity of each trial given by

Vmax = max
tsom<t<teom

[v(t)] (4)

2) Torso Features: Torso compensation is usually in the
form of significant levels of torso leaning forward or torso
twisting to the sides, which can negatively impact in long
term functional recovery. As mentioned in section II-A, we
use a rigid rectangular plate with four reflective markers on
the corners, placed on the participant’s left side of chest to
track the torso movements. Using the trajectory of rotation
angles Rx, Ry and Rz extracted from the centroid of the rigid
plate (in radians), we compute a thresholded error function
given by

Fig. 3: The decision tree model for movement quality assessment
of wrist trajectory. The low-level kinematic features used were
horizontal trajectory error (Êhor), vertical trajectory error (Êver),
peak speed (Vmax), velocity bellness (BNA) and jerkiness (J). The
scores highlighted in blue are the decision tree outputs for wrist
trajectory analysis.

R̂x(i) =

{
Rx(i) if Rx(i) > T1

0 otherwise
(5a)

Similarly, thresholded error functions R̂y and R̂z are calcu-
lated using thresholds T2 and T3 respectively. The confidence
values for torso compensation is then computed as

Cx =

∑
<i>

R̂x(i)∑
<i>

Rx(i)
(5b)

Confidence levels Cy and Cz are similarly computed. The
thresholds T1, T2 and T3 were selected to be 0.15 based on
empirical analysis.

IV. EXPERIMENTAL RESULTS

Using the data collected from eight participants perform-
ing reach and grasp movements to a cone target, we learned
a decision tree model (using CART [3]) for automated eval-
uation of movement quality. Each participant performed five
reach movements in each of four sessions, corresponding to
a total of 130 reaches (two participants could only complete
one session each). 70% of reaches were selected as training
samples, and the remainder were selected as testing samples.
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Fig. 4: Comparison between impairment level (with 4 being least
impaired and 1 being most impaired) given by component-level
score for wrist trajectory and decision tree predictions. The Pearson
correlation coefficient was found to be 0.8049.

Fig. 5: The decision tree model for movement quality assessment of
torso compensation. The scores highlighted in blue are the decision
tree outputs for torso compensation analysis.
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Fig. 6: Comparison between impairment level (with 4 being least
impaired and 1 being most impaired) given by component-level
rating for compensation by therapist and decision tree predictions.
The Pearson correlation coefficient was found to be 0.9129.

The dataset was split into one 70 − 30 split at random and
we do not provide any crossvalidation results in this paper.

The decision tree model for the wrist trajectory using
low-level kinematic features like trajectory error, jerkiness,
velocity bellness and peak speed is shown in Fig. 3. In order
to evaluate the model for movement quality assessment of
wrist trajectory, we compare the decision tree outputs with
the component-level score for wrist trajectory given by ther-
apists (shown in Fig. 4). The Pearson correlation coefficient
between the decision tree model output and the therapist
rating was found to be 0.8049. Similarly, using rotation
angles, we learned a decision tree model for quantification
of torso compensation as shown in Fig. 5. Comparison of
decision tree outputs with the therapist rating for component-
level scores for torso compensation (shown in Fig. 6) show
high correlation with the Pearson correlation coefficient to
be 0.9129.

Evident from the high correlations with the therapist
ratings, our results indicate that the kinematic movement
components such as trajectory error, speed profile devia-
tion and torso compensation, when used as inputs to our
decision tree models, are capable of simulating the ratings
from therapists using the rating rubric described in Table
I. These results lead us further postulate that the proposed
framework can be used as an assistive tool to therapists
during supervised rehabilitation to reduce the time spent on
movement quality assessment.

From the wrist marker analysis, we find that the kinematic
attributes indicative of impairments in spatial domain are
near the top of the tree, while the kinematic attributes related
to speed-profile deviation are near the bottom. One potential
explanation for this is that these attributes are more easily
perceived by therapists given the camera view of the videos
being rated (see Fig. 2) and therefore are more important in
the decision tree hierarchy. However, multiple hidden factors
may also have influenced this result and more analysis or
larger datasets reviewed by multiple therapists is needed
before any conclusions can be drawn. Further, the torso
analysis show that the rotation along Z-axis was not included
in the decision tree model, indicating it to be an unnatural
movement.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a computational framework
capable of simulating the component-level movement quality
assessment rubric with imposed hierarchical structure on
physical therapists. This automatic assessment of movement
quality framework can provide suggestions to physical thera-
pists during supervised rehabilitation reducing the time spent
on evaluating the quality of movements, thereby reducing the
cost of long-term rehabilitation treatment.

Our results indicate that the kinematic components we
chose (hand trajectory error in the horizontal and vertical
planes, peak speed, jerkiness, velocity bellness and torso
rotation along XYZ axes) combined with a decision tree
model are capable of simulating the results of an imposed
hierarchical structure used by trained therapists. The selected
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low-level kinematic attributes are representative of the im-
pairments in reach and grasp action and can collectively be
used to generate a movement ‘component score’ showing
high correlation with the therapist rating. These results also
indicate that the proposed framework can be used as an
assistive tool to therapists during supervised rehabilitation
to reduce the time spent on movement quality assessment.

To more specifically qualify our findings: the rehabilitation
experts were able to create an imposed hierarchy based on
expert knowledge (presented in Table I). Given this hierarchy
developed by expert knowledge and its careful implementa-
tions by highly trained therapists, we are able to replicate
the results of their ratings through a decision tree approach.
Our initial results support that these decision trees can help
with semi-automated ratings when the therapist is absent,
and assist therapists to provide ratings faster when they log-
in remotely to fine tune a home-based training system for
a participant. Since we achieved favorable results using this
decision tree approach given a particular imposed hierarchy,
when the hierarchy needs to be switched for different types
of training, we propose that similar trees can be estimated
based on different hierarchies across tasks, stages of therapy,
and participants. Thus, our process is dependent on clear
declarations of hierarchies by therapists and their consistent
implementation.

Defining an ontology of component-level labels for move-
ment quality assessment is seen as a difficult problem
in the stroke rehabilitation community. While the current
research was directed towards learning a simple decision
tree model for knowledge representation of given physi-
cal therapists, our future goal is to extract a generalized
knowledge representation for movement quality assessment
using evaluations from multiple therapists. Similar problems
have been discussed in the machine learning community
[11]. We are currently collecting evaluation ratings from
multiple therapists as different knowledge representations for
movement quality assessment and will be used to estimate a
generalized knowledge model using existing approaches for
matching of knowledge structures.

VI. ACKNOWLEDGEMENTS

The authors thank the physical therapists Aimee Reiss and
Marsha Bidgood at Emory University, and Meghan Buell at
Rehabilitation Institute of Chicago for their contributions.

REFERENCES

[1] S. Attygalle, M. Duff, T. Rikakis, and J. He. Low-cost, at-home
assessment system with wii remote based motion capture. In Virtual
Rehabilitation, pages 168–174. IEEE, 2008.

[2] M. Baran, N. Lehrer, D. Siwiak, Y. Chen, M. Duff, T. Ingalls,
and T. Rikakis. Design of a home-based adaptive mixed reality
rehabilitation system for stroke survivors. In EMBC, pages 7602–
7605. IEEE, 2011.

[3] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification
and regression trees. CRC press, 1984.

[4] C.-Y. Chang, B. Lange, M. Zhang, S. Koenig, P. Requejo, N. Somboon,
A. A. Sawchuk, and A. A. Rizzo. Towards pervasive physical rehabil-
itation using microsoft kinect. In Pervasive Computing Technologies
for Healthcare, pages 159–162. IEEE, 2012.

[5] Y. Chen, M. Duff, N. Lehrer, S.-M. Liu, P. Blake, S. L. Wolf,
H. Sundaram, and T. Rikakis. A novel adaptive mixed reality system
for stroke rehabilitation: principles, proof of concept, and preliminary
application in 2 patients. Topics in stroke rehabilitation, 18(3):212–
230, 2011.

[6] Y. Chen, M. Duff, N. Lehrer, H. Sundaram, J. He, S. L. Wolf, and
T. Rikakis. A computational framework for quantitative evaluation
of movement during rehabilitation. In AIP Conference Proceedings,
volume 1371, page 317, 2011.

[7] Y. Chen, W. Xu, R. I. Wallis, H. Sundaram, T. Rikakis, T. Ingalls,
L. Olson, and J. He. A real-time, multimodal biofeedback system
for stroke patient rehabilitation. In ACM Multimedia, pages 501–502.
ACM, 2006.

[8] M. de Niet, J. B. Bussmann, G. M. Ribbers, and H. J. Stam. The stroke
upper-limb activity monitor: its sensitivity to measure hemiplegic
upper-limb activity during daily life. Archives of physical medicine
and rehabilitation, 88(9):1121–1126, 2007.

[9] A. W. Dromerick, C. E. Lang, R. Birkenmeier, M. G. Hahn, S. A.
Sahrmann, and D. F. Edwards. Relationships between upper-limb
functional limitation and self-reported disability 3 months after stroke.
Journal of rehabilitation research and development, 43(3):401, 2006.

[10] M. Duff, Y. Chen, L. Cheng, S.-M. Liu, P. Blake, S. L. Wolf, and
T. Rikakis. Adaptive mixed reality rehabilitation improves quality of
reaching movements more than traditional reaching therapy following
stroke. Neurorehabilitation and neural repair, 27(4):306–315, 2013.

[11] F. Hadzic and T. S. Dillon. Application of tree mining to matching
of knowledge structures of decision tree type. In On the Move
to Meaningful Internet Systems 2007: OTM 2007 Workshops, pages
1319–1328. Springer, 2007.

[12] G. Kwakkel, B. Kollen, and E. Lindeman. Understanding the pattern
of functional recovery after stroke: facts and theories. Restorative
neurology and neuroscience, 22(3):281–299, 2004.

[13] N. Lehrer, S. Attygalle, S. L. Wolf, and T. Rikakis. Exploring
the bases for a mixed reality stroke rehabilitation system, part i: A
unified approach for representing action, quantitative evaluation, and
interactive feedback. Journal of neuroengineering and rehabilitation,
8(1):51, 2011.

[14] N. Lehrer, Y. Chen, M. Duff, S. L. Wolf, and T. Rikakis. Exploring
the bases for a mixed reality stroke rehabilitation system, part ii:
Design of interactive feedback for upper limb rehabilitation. Journal
of neuroengineering and rehabilitation, 8(1):54, 2011.

[15] J. Mackay, G. A. Mensah, and K. Greenlund. The atlas of heart
disease and stroke. World Health Organization, 2004.

[16] S. Patel, R. Hughes, T. Hester, J. Stein, M. Akay, J. G. Dy, and
P. Bonato. A novel approach to monitor rehabilitation outcomes in
stroke survivors using wearable technology. Proceedings of the IEEE,
98(3):450–461, 2010.

[17] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growdon, D. Standaert,
M. Akay, J. Dy, M. Welsh, and P. Bonato. Monitoring motor fluctu-
ations in patients with parkinson’s disease using wearable sensors.
TITB, 13(6):864–873, 2009.

[18] M. Perc. The dynamics of human gait. European journal of physics,
26(3):525, 2005.

[19] D. Siwiak, N. Lehrer, M. Baran, Y. Chen, M. Duff, T. Ingalls, and
T. Rikakis. A home-based adaptive mixed reality rehabilitation system.
In ACM Multimedia, pages 785–786. ACM, 2011.

[20] N. Stergiou and L. M. Decker. Human movement variability, nonlinear
dynamics, and pathology: is there a connection? Human movement
science, 30(5):869–888, 2011.

[21] E. Taub, G. Uswatte, R. Pidikiti, et al. Constraint-induced movement
therapy: a new family of techniques with broad application to physical
rehabilitation-a clinical review. Journal of rehabilitation research and
development, 36(3):237–251, 1999.

[22] V. Venkataraman, P. Turaga, N. Lehrer, M. Baran, T. Rikakis, and
S. L. Wolf. Attractor-shape for dynamical analysis of human move-
ment: Applications in stroke rehabilitation and action recognition. In
CVPRW, 2013.

[23] S. L. Wolf, P. A. Catlin, M. Ellis, A. L. Archer, B. Morgan, and
A. Piacentino. Assessing wolf motor function test as outcome measure
for research in patients after stroke. Stroke, 32(7):1635–1639, 2001.

[24] M. Zhang, B. Lange, C.-Y. Chang, A. A. Sawchuk, and A. A. Rizzo.
Beyond the standard clinical rating scales: Fine-grained assessment
of post-stroke motor functionality using wearable inertial sensors. In
EMBC, pages 6111–6115. IEEE, 2012.

3159


