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Abstract— Movement-related diseases, such as Parkinson’s
disease (PD), progressively affect the motor function, many
times leading to severe motor impairment and dramatic loss of
the patients’ quality of life. Human motion analysis techniques
can be very useful to support clinical assessment of this type
of diseases. In this contribution, we present a RGB-D camera
(Microsoft Kinect) system and its evaluation for PD assessment.
Based on skeleton data extracted from the gait of three PD
patients treated with deep brain stimulation and three control
subjects, several gait parameters were computed and analyzed,
with the aim of discriminating between non-PD and PD subjects,
as well as between two PD states (stimulator ON and OFF). We
verified that among the several quantitative gait parameters, the
variance of the center shoulder velocity presented the highest
discriminative power to distinguish between non-PD, PD ON
and PD OFF states (p = 0.004). Furthermore, we have shown
that our low-cost portable system can be easily mounted in any
hospital environment for evaluating patients’ gait. These results
demonstrate the potential of using a RGB-D camera as a PD
assessment tool.

I. INTRODUCTION

Parkinson’s disease (PD) is an idiopathic neurodegenerative
disease, which results from the death of brain cells that
produce dopamine [1]. The lack of dopamine typically leads
to characteristic motor symptoms, such as bradykinesia (i.e.
slowness of movement), shuffling gait, and freezing of gait
(i.e. sudden and brief motor blocks).

An estimated seven to ten million individuals worldwide
have PD [2]. This number is expected to rise significantly
in the future [3], with 60,000 new cases being currently
reported every year only in the U.S. [2]. Even though
PD has presently no cure, there is available treatment that
can improve functional capacity. A possible treatment is
deep brain stimulation (DBS), which consists in implanting
stimulating electrodes in the brain, and a pulse generator.

To provide the best possible treatment, both an early
diagnosis and regular evaluations are essential. The diagnosis
of PD is currently based mainly on clinical criteria [1]. During
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PD follow-up, the monitoring of the disease’s progression
and treatment outcome is usually based on a rating scale,
such as the Unified Parkinson Disease Rating Scale (UPDRS)
[4]. In both cases, the assessment typically includes visual
examination of motor symptoms by physicians, which tends
to be rather subjective. So, the quantification of motor signs
can be very useful to enhance both PD diagnosis and follow-
up [5], [6], and possibly lead to an improvement of treatment
and overall life quality of PD patients.

Gait analysis in PD, using motion or vision sensors, has
been studied by various authors [5], [6], [7]. In [6], the authors
proposed a PD monitoring tool, based on six accelerometers
and one gyroscope. Based on sensor data collected from PD
patients, they extracted parameters that can be useful for
distinguishing between on and off states.

A vision-based system for PD assessment (distinction
between non-PD, PD drug on and PD drug off states) was
proposed in [5]. The authors recorded videos of PD patients
and control subjects while walking. A minimum distance
classifier was then built, based on features resulting from gait
analysis, which achieved an accuracy of 80.5%.

Recently, the Microsoft KinectTM has been used for gait
analysis [7], [8], [9]. The Kinect is a low-cost, portable RGB-
D (Red, Green, Blue, Depth) camera [10] that provides color
and depth image sequences, as well as skeleton data resulting
from 3D tracking. This camera has the added advantage of
being less intrusive than marker-based sensors. Moreover,
when compared with RGB cameras, it allows motion analysis
in less controlled environments, due to the use of a depth
sensor based on infrared light, without losing accuracy [9].

A gait analysis system that uses a Kinect was developed
in [8]. Regression models were built based on skeleton data,
and ground truth measures (using in-shoe pressure sensors
and a gyroscope), which were collected from subjects while
walking. The obtained models were able to estimate stride
duration and arm angular velocity, with an average absolute
error in the range between 32 and 71 milliseconds, and 14
and 22 degrees/second, respectively.

Regarding PD, the validity of the Kinect for movement
measurement in PD patients was recently explored in [7].
When compared with a Vicon system, the sensor was able to
accurately measure timing and gross spatial characteristics
of clinically relevant movements, validating its use for gait
analysis in the health care context, namely in PD.

Considering the potential of RGB-D camera systems to
constitute a low-cost and portable solution for assessing
movement-related diseases, we explore in this contribution
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the possibility of using such a system as a PD assessment
tool. We carried out an evaluation of both PD patients and
control subjects, during a walking task, which consisted in
the extraction of several gait parameters from skeleton data
acquired by using our KinecTracker application. Moreover,
the usefulness of those parameters for supporting both PD
diagnosis and follow-up was studied.

II. MATERIALS AND METHODS

An experimental protocol was carried out in a room at
São João University Hospital (Porto, Portugal), with the
participation of three PD patients (P1, P2 and P3) and three
control subjects (C1, C2 and C3). Each PD patient had an
implanted DBS stimulator, and performed the experiment
twice: with the stimulator on (STIM ON); and a few minutes
after turning off the stimulator (STIM OFF). Each control
subject performed the experiment only once.

The protocol included the use of the KinecTracker ap-
plication, developed in C# by our group using the Kinect
Software Development Kit v1.5 [11], to acquire skeleton
data (at a 30 fps rate) from PD patients and control subjects,
while they were walking. The walking trajectory of four
meters is illustrated by an arrowed dashed line in Fig. 1. This
figure also includes the relevant distances, as well as the
Kinect height and tilting angle in relation to the horizontal
plane (perpendicular to the gravity force). The chosen setup
took into account the Kinect limitations [12], and aimed at
maximizing the actual tracking area, which is represented by
the grey rectangle in Fig. 1.

The demographics of the control subjects and PD patients
are presented in Table I. For the PD patients, disease-related
details are shown in Table II, including the number of months
since DBS surgery, and the UPDRS scores for the motor
examination section and the specific gait item [4]. The study
was authorized by the hospital’s Ethics Committee, and all
subjects signed an informed consent form.

Each acquired frame data corresponds to a skeleton of
twenty joints, illustrated in Fig. 2 (a). Fig. 2 (b) shows
an example of depth and skeleton data, as displayed in
KinecTracker (user interface shown in Fig. 3). Each joint
corresponds to a 3D position, considering the coordinate
system associated with the Kinect [12] (depicted in Fig. 1).

The data acquired within the tracking area were firstly
manually selected, and then partitioned into gait cycles, based
on depth data acquired at the same time as the skeleton data.
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Fig. 1. Experimental setup used for data acquisition, including the coordinate
system associated with the Kinect.

TABLE I
SUBJECTS’ CHARACTERIZATION (AVERAGE AND [MINIMUM, MAXIMUM]

VALUES FOR AGE, WEIGHT, AND HEIGHT).

Control subjects PD patients
Gender (male/female) 2/1 2/1

Age 49 [46, 54] 53.7 [47, 59]

Height (m) 1.65 [1.58, 1.72] 1.68 [1.59, 1.8]

Weight (kg) 83.3 [54, 118] 82.7 [78, 90]

TABLE II
PARKINSON’S DISEASE PATIENTS’ CHARACTERIZATION REGARDING DBS

AND UPDRS SCORES.

PD patient Months after
DBS surgery

UPDRS IIIa (gaitb)
STIM ON STIM OFF

P1 6 13 (1) 31 (1)

P2 1.5 7 (1) 26 (1)

P3 10 11 (0) 42 (2)
a UPDRS motor score (part III). The maximum score is 108. [4]
b UPDRS gait sub-score (item 29). Score ranges between 0

(normal) and 4 (cannot walk). [4]

We considered that a gait cycle begins when the left/right
foot initiates contact with the ground (ICL/R), and ends when
the same foot initiates again contact with the ground. In
the data analysis presented below, we used only the data
corresponding to the portion of the walking sequence where
the subject is walking towards the camera, since we verified
that the remaining data were much noisier.

As indicated in Fig. 1, the Kinect was tilted by rotating
−16◦ around its x-axis, with the aim of obtaining the optimum
field of view. In order to simplify comparison between results
obtained with different angles, and facilitate interpretation
of results, the joints’ 3D positions were converted into a
coordinate system corresponding to a non-tilted camera (angle
of 0◦).

Based on the resulting data we created two different
datasets: unfiltered and filtered. The filtered dataset was

(a) (b)

Fig. 2. Skeleton joints provided by the Kinect (a), and depth and skeleton
data as displayed in the KinecTracker application (b).
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Fig. 3. User interface of the KinecTracker application.

obtained by using a first order low-pass Butterworth filter,
with a cutoff frequency of 5 Hz, over the unfiltered data. For
both datasets, the following 34 measures were computed, for
each frame of each left/right gait cycle:

• Velocity of the left/right foot, ankle, knee and hip,
right/left hand, wrist, elbow and shoulder, central hip
and shoulder, spine, and head, using (1);

• Acceleration of the left/right foot, ankle, knee and hip,
right/left hand, wrist, elbow and shoulder, central hip
and shoulder, spine, and head, using (2);

• Distance between feet, ankles, knees, hands, wrists, and
elbows, using (3);

• Angle at left/right knee (defined by hip, knee and ankle
joints), right/left elbow (defined by wrist, elbow and
shoulder joints), center shoulder (defined by spine, center
shoulder and head joints), and spine (defined by center
hip, spine and center shoulder joints), using (4).

velocity =
√

v2x + v2y + v2z ≈

√
∆x2 + ∆y2 + ∆z2

∆t2
(1)

acceleration =
√

a2
x + a2

y + a2
z ≈

√
∆vx

2 + ∆vy
2 + ∆vz

2

∆t2
(2)

distance = ‖−−−−−−−→PleftPright‖ (3)

angle = arccos

( −−−→
P2P1.

−−−→
P2P3

‖−−−→P2P1 ×
−−−→
P2P3‖

)
(4)

In (1), vx is the component of the velocity vector on the
x-axis for a given joint, and ∆x corresponds to the difference
between the x-coordinate values considering two consecutive
frames. In (2), ax is the component of the acceleration vector
on the x-axis for a given joint, and ∆vx refers to the difference
between velocities, on the x-axis, considering two consecutive
frames. Similar notations are used for the y- and z-axis.
In both (1) and (2), ∆t is the time elapsed between two
consecutive frames.

In (3), Pleft and Pright refer to the left and right
joint 3D positions, respectively. In (4), P1, P2 and P3

correspond to three different joint 3D positions. For example,
considering the angle at left knee, these points correspond

to the coordinates of the left hip, knee and ankle joints,
respectively.

A set of parameters, for each gait cycle, was then computed
over the obtained velocities, accelerations, distances and
angles: average, median, variance, and variance divided by the
average (normalized variance). This resulted in 136 different
parameters.

Additionally, the following four parameters were obtained,
for each gait cycle: gait cycle duration, stride length, stride
average velocity, and cadence. For the right leg, these param-
eters were computed using (5), (6), (7) and (8), respectively.
In (5) and (6), k corresponds to the gait cycle number. In
(6), PICR(k) and PICR(k+1) refer to the right ankle 3D
positions at instants ICR(k) and ICR(k + 1), respectively.
Similar equations were used for the left leg.

kth gait cycle duration = ICR(k + 1)− ICR(k) (5)

kth stride length = ‖−−−−−−−−−−−−−→PICR(k)PICR(k+1)‖ (6)

stride average velocity = stride length/gait cycle duration (7)

cadence = 1/gait cycle duration (8)

III. RESULTS

In order to evaluate which parameters can be used to
statistically distinguish between non-PD subjects, PD patients
in the STIM ON state and PD patients in the STIM OFF
state, we performed the Kruskal-Wallis test [13] for each
different parameter. The results (p < 0.05) for each dataset
(unfiltered and filtered) are presented in Table III, where the
lowest value for each case is indicated in bold.

Fig. 4 shows an example of the center shoulder velocity
versus the elapsed time, during a single gait cycle carried out
by subject C2 and patient P2 in the STIM OFF state, when
considering the filtered data. The corresponding variance
values are also indicated in Fig. 4.

TABLE III
KRUSKAL-WALLIS TEST RESULTS (p < 0.05), WHEN COMPARING

NON-PD, PD STIM ON AND PD STIM OFF STATES, FOR THE

UNFILTERED AND FILTERED DATASETS.

Parameter
p-valuea

Unfiltered Filtered

Variance

Velocity
Head N.S. 0.011

Center shoulder 0.027 0.004
Shoulder N.S. 0.021

Acceleration Center shoulder 0.042 0.016
Distance Elbows 0.019 0.024

Angle Elbow 0.046 N.S.

Normalized
variance

Velocity
Elbow N.S. 0.046

Center shoulder 0.009 0.006
Shoulder N.S. 0.039

Acceleration Center shoulder 0.041 0.008
Distance Elbows 0.024 0.024

Average Acceleration Center shoulder N.S. 0.041

Stride duration 0.045 0.045

Cadence 0.045 0.045
a N.S. means non-significant (p >= 0.05).
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Fig. 4. Velocity of the center shoulder versus the elapsed time, for a
gait cycle performed by subject C2 and patient P2 in STIM OFF state,
considering the filtered dataset. The associated variance values are also
included.

IV. DISCUSSION AND CONCLUSION

In this contribution, we used a system based on a single
sensor that minimizes intrusiveness, when compared with the
use of several sensors attached to the body in [6]. Similarly
to [5], we explored the possibility of both PD diagnosis and
follow-up based on gait analysis. However, in contrast with
[5], we relied on depth images and skeleton data based on
infrared light instead of common RGB images, which allowed
a less controlled environment (background color, lighting, and
subject clothing). Comparing with [8], we analyzed a greater
number of gait parameters, associated with all skeleton joints
provided by the Kinect. Moreover, we identified the most
appropriate parameter for PD assessment.

From Table III, we can see that filtering contributes to an
overall improvement of the parameters’ ability to statistically
distinguish between three different states: non-PD, PD STIM
ON, and PD STIM OFF. It can also be seen that the
variance of the center shoulder velocity seems to be the most
appropriate parameter for discriminating between the three
considered states (p = 0.004). From the example depicted in
Fig. 4, we can see that the value of this parameter is smaller
for the PD patient, when compared with the control subject.
This can be explained by the fact that PD patients tend to
walk slower, and therefore their walking speed does not reach
values as large as for healthy subjects.

The presented results show the potential of using a low-
cost RGB-D camera-based system for supporting both PD
diagnosis and follow-up, which can be very important for
early detection of PD and treatment outcome improvement.
Consequently, it can contribute to an increase of the patients’
quality of life, and a reduction of health care costs.

V. FUTURE WORK

Although the obtained results provide indications for using
RGB-D cameras to support PD assessment, more data are

required to confirm these preliminary indications. Acquisition
sessions with new subjects are already scheduled and the
associated results will be included in the next contribution.
Furthermore, we have now integrated the pre-release version
of the new Kinect for Windows v2 [14], which is expected
to have better overall characteristics, into the KinecTracker
application. This pre-release camera was awarded to our R&D
group as a “Developer Preview Program” member, and will
be used in the present system evolution.
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