
  

 

Abstract— Marker-less optical head-tracking constitutes a 

comfortable alternative with no exposure to radiation for real-

time monitoring in radiation therapy. Supporting information 

such as tissue thickness has the potential to improve spatial 

tracking accuracy. Here we study how accurate tissue thickness 

can be estimated from the near-infrared (NIR) backscatter 

obtained from laser scans. In a case study, optical data was 

recorded with a galvanometric laser scanner from three sub-

jects. A tissue ground truth from MRI was robustly matched 

via customized bite blocks. We show that Gaussian Processes 

accurately model the relationship between NIR features and 

tissue thickness. They were able to predict the tissue thickness 

with less than 0.5 mm root mean square error. Individual scal-

ing factors for all features and an additional incident angle 

feature had positive effects on this performance.  

I. INTRODUCTION 

 Precise treatment of tumors in radiotherapy directly de-

pends on the accuracy of patient positioning and motion 

compensation during the treatment. Therefore, state-of-the 

art intracranial radiotherapy either employs stereotactic 

masks for patient immobilization [1] or X-ray based moni-

toring and motion compensation such as the 6D skull track-

ing used by the CyberKnife
®
 [2]. These entail several draw-

backs: First, the mask systems are rather uncomfortable and 

are not tolerated by all patients. They further provide no 

motion monitoring during the treatment - the patient is as-

sumed to be fixed. This is only true up to errors in millimeter 

range [1]. Second, X-ray based imaging exposes the subject 

to an unnecessary amount of additional radiation. This expo-

sure also limits the head-tracking speed to about 1 Hz. 

 Therefore, recent studies propose marker-less optical 

head-tracking as a promising alternative, where a laser con-

stantly scans the patient's forehead. This approach would 

require only light patient fixation and provides a basis for 

fast real-time monitoring [3, 4]. To tackle the lack of promi-

nent landmarks at the forehead and to increase robustness, 

spatial information is combined with optical backscatter 

features for each laser spot. Monte-Carlo simulations [3] and 

an experimental study [4] gave evidence that, for light in the 

near-infrared (NIR) range, these features can be used to re-
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construct the tissue thickness across the forehead, revealing 

subcutaneous structures. These may act as supportive land-

marks for a tracking algorithm. This reconstruction can be 

achieved using regression techniques such as Support vector 

regression (SVR). 

 Despite general feasibility, [4] states four unsolved chal-

lenges. First, the matching between the NIR scans and the 

MR image, which is used as a ground truth for the tissue 

thickness, is not reliable. So far there was no satisfying way 

to judge the accuracy of the matching approach consisting of 

a combination of an Iterative-Closest-Point (ICP) algorithm 

[5] and a correlation-based refinement. For some subjects 

this approach was not fully applicable. Second, the laser 

scanning process was performed by a robot, which results in 

a slow scanning speed. Third, training an SVR model [6] 

required time-consuming grid search and could not readily 

incorporate scaling parameters for individual features such 

as the incident angle [7]. Fourth, the preliminary study was 

limited to only three subjects. 

 In this study we tackle the first three challenges. All of 

them require careful attention before a more containing 

study can be conducted. We therefore propose the following: 

First, a marker-based ground truth for seeding the ICP is 

used. Patients will be outfitted with a marker visible during 

MR imaging and the NIR scan. This provides the spatial 

transformation between the two spaces given a known mark-

er geometry. Second, a faster mirror-based deflection system 

will replace the robot. We show how tissue thickness estima-

tion is influenced by this galvanometric laser scanner, which 

naturally implies stronger non-informative impact of chang-

ing incident angles on the data [7]. Third, Gaussian Process-

es (GPs) will be used to compute the tissue thickness from 

the recorded optical features [8]. They employ Bayesian 

inference to determine the most likely model parameters 

given the data and avoid time-consuming grid search on the 

training set. They implicitly provide the possibility to opti-

mize scaling parameters for each feature by incorporating 

them into the inference. This renders automatic relevance 

detection (ARD) practically feasible. For comparison with 

the study conducted in [4], we will present a case study on 

new data recorded from the same three volunteering sub-

jects. 

 The article will first review materials and methods. Par-

ticular attention will be directed to the new contributions. 

Then the results and subsequent discussion will present and 

debate matching and thickness estimation accuracies. A final 

conclusion will be provided.   
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II. MATERIALS AND METHODS 

A. Experimental Setup - NIR Laser Scans  

 The robotized setup described in [4], including an 850 nm 

laser source, a triangulation camera (IDS UI-3340CP-NIR-

GL) and a 16 bit High Dynamic Range (HDR) camera 

(ANDOR Zyla) was extended by a galvanometric deflection 

unit (ASX-V20, laserwinkel.nl) [9]. NIR features were ex-

tracted with the HDR camera. A tracking camera (Polaris 

Spectra, NDI, 0.25-0.3 mm RMS tracking error) was used to 

track optical marker spheres attached to each customized 

subject marker (cf. Fig. 1).  

 The marker was constructed out of Poly(methyl methacry-

late) (PMMA) and can be rigidly attached to the subject's 

upper jaw using a customized dental cast. The liquid cap-

sules at the upper end of the marker are MR-visible.  

 The triangulation camera was calibrated to the tracking 

camera using the standard direct linear transformation (DLT) 

algorithm [10] and recordings of the passive marker sphere 

of the marker. The scanner was configured to raster a grid of 

32 x 32 = 1024 points. For each of the corresponding rays a 

galvanometer-to-triangulation-camera calibration was car-

ried out and stored in a look-up table manner as described in 

[9]. Using the mentioned calibrations and the marker geome-

try, the NIR scans were transformed into the MR coordinate 

space. NIR and MR scans were recorded from three subjects 

(male, aged 25-34), who’s head was immobilized using a 

vacuum cushion. 

B. Ground Truth - Skin Segmentation in MRI Scans 

 

 MR imaging was used to generate a precise ground truth 

for the thickness distribution across the forehead. 

 The MR images were acquired with T1 weighting and 

were reconstructed from a 3D k-space. Using a 3D volume-

of-interest (VOI) of 210 mm × 210 mm × 60 mm (2048 × 

2048 × 60 voxels) at the forehead, this measurement se-

quence is capable of quickly acquiring a highly resolved 

volume (reconstructed resolution of 0.103 mm × 0.103 mm 

× 1 mm). The VOI was aligned to the anterior commissure – 

posterior commissure line (AC-PC line) of the subject to set 

one of the coordinate axes of the volume orthogonal to the 

forehead. The z-axis passes parallel to the forehead. After 

restricting the MR volume to the subject’s forehead, the skin 

and bone surfaces have been extracted as described in [4]. 

Each of the markers as shown in Fig. 1 had MR-visible 

spherical capsules and was used by every subject during data 

acquisition. The marker geometry was extracted from high 

resolution CT images (0.33 mm × 0.33 mm × 0.2 mm reso-

lution, 512 × 512 × 1000 voxels). Both the liquid capsules 

and the reflective marker spheres were visible in the CT im-

age. Their relative position with respect to each other is 

hence given within this marker coordinate system. 
 All three recordings (MR-, CT- and NIR-scans) were ac-
quired in temporal proximity. For any acquisition, the marker 
was used in the same pose (shown in Fig. 1). Preliminary 
tests with the tracking camera revealed no measureable de-
formation errors in any of the marker axes. They can hence 
be assumed to lie below the tracking accuracy. 

  

Figure 1.  Marker geometry used to match NIR to MRI data. The marker 

can be rigidly linked to the cranial bone using a customized dental cast. It is 

visible for both MRI and the tracking camera via liquid capsule and 
reflective marker spheres, respectively. 

C. Data Pre-processing and Feature Extraction 

 

 The images from the HDR camera were processed as de-

scribed in [4]. After detecting the centroid of the spot, the 

pixel intensities were accumulated within 5 concentric re-

gions-of-interest (ROIs) around the spot center. To speed up 

the data transfer rate between HDR camera and host com-

puter, a smaller image size (1000 x 1000 pixels) than in [4] 

was chosen. This resulted in 5 instead of 7 ROIs. The inci-

dent angle for each spot was obtained using the triangulated 

forehead surface and the stored ray information from the 

galvanometer-to-triangulation-camera calibration. No angle 

compensation was applied to the spots, but the angle was 

used as a sixth feature [7]. 

 After subtracting the minimum, each feature and the tissue 

thickness label were scaled to range [0,1] and the mean was 

removed. Sample-wise correspondences between features 

and tissue labels were derived after coordinate transfor-

mation into the same space. As described earlier, this was 

done using the transformation defined by the marker and the 

other calibration steps. Finally, this transformation was taken 

as a seed for an ICP refinement step to compensate for re-

maining minor displacement, if necessary. 

 

D. Gaussian Process Models 

 

 Similar to SVR [6], Gaussian Processes (GPs) use a gen-

eral data model with white noise as illustrated in (2) [7]. By 

assuming that each skin thickness sample ds follows a 

Gaussian distribution, the GP corresponds to a distribution 

over functions f in the feature space:  

 

f ~ GP(m,k).      (1) 

 

The process is fully described by second-order statistics 

(with feature vector b, mean and covariance function, m(b) 

and k(b,b'), respectively):  
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ds = f (b) + ε; with b = [b1, ... b6],  f: ℝ6 ↦ ℝ1  (2) 

 

 Each function is assigned a probability given the training 

data. This is achieved by Bayesian inference which yields a 

posterior distribution p(f |D) for the function parameters giv-

en the data D = {B=[b1, ...bN],ds=[ds1, ... dsN]}. An appropri-

ate parameter set is obtained by minimizing the negative log 

marginal likelihood (NLML) using several runs of randomly 

initialized gradient descent. This replaces time-consuming 

grid search based on cross-validation as it was used to opti-

mize the SVR parameters in [3,4]. It finds the most likely 

parameters for the model given a single training data set.  

 Since the mean is removed from the data during pre-

processing, the mean function is always set to zero. The en-

tire function is hence described by the covariance k(b,b'), 

which models the mutual statistical dependencies between 

different regions in the feature space. It thus learns similarity 

between data points. This similarity is expressed by kernel 

functions. A comparable analog to the SVR radial basis 

function (RBF) kernel is given by the squared exponential 

(SE) kernel described by Rasmussen [7]. However, Stein 

argues that the Matérn kernel function includes the SE ker-

nel and offers higher local flexibility [11]. Therefore the 

Matérn class was used: 

 

 k(r) = s
2
(1+r√3)·exp( -r√3).       (3) 

kiso(r) =k(r/γ0)               (4) 

kard(r) = k(diag(γ1
-1

, ... γ6
-1

)r).        (5) 

 

with the scaling factors s and γi, and r = |b-b|'. Eq. (4) repre-

sents the isotropic and (5) the automatic relevance detection 

(ARD) Matérn kernel. The latter weighs features according 

to relevance by introducing individual scaling factors γi for 

each feature. A new sample ds
*
 for a feature vector b

*
 is pre-

dicted using the conditional distribution p(ds
*
|b

*
,D) ~ 

N(đs
*
,var[ds

*
]) [8], with 

 

đs
*
 = k(B, b

*
)

T
 k(B, b

*
)

-1
 ds   (6) 

var[ds
*
] = k(b

*
,b

*
) - k(B,b

*
)

T
 k(B,B)

-1
 k(B,b

*
).   (7) 

 

 The evaluation of the prediction error on each data set has 

been carried out using 5-times-10-fold cross-validation in 

terms of root-mean-square (RMS) and mean absolute (MA) 

error. 

III. RESULTS 

A.  Matching Results and Angle Influence 

 

 Table 1 summarizes the results from all three subjects. For 

the data analysis, only a subset of the in total 1024 points 

was used. Data sample rejection was carried out when the 

laser hit hair or when the triangulation was not possible due 

to very steep incident angles. The mean incident angle 

ranged between 32° and 37° and was higher than with the 

robotized scanner in [4] or [7], where approximately orthog-

onal irradiation (0°) or a mean angle of about 20° was found, 

respectively. The head motion in all three coordinate axes 

for all subjects was on average below 1 mm for almost all 

cases. 

  
Figure 2.    Matching result using a seeded ICP algorithm for subject 1. 

The plot contrasts skin thickness from an MR scan (top) with the NIR 

feature of ROI number 2 (bottom). Both are plotted in the same coordinate 

space and four blue markers show selected correspondences for better 
orientation. The NIR feature is measured in accumulated ADC counts of the 

camera sensor (from yellow (high intensity) to dark red (low intensity). 

This motion was compensated for each spot individually 

using the corresponding tracking pose of the marker at that 

time. Considering this and the matching procedure described 

earlier, a very low matching ICP error of less than 0.7 mm 

was achieved for all subjects.  

     In addition to this quantitative measure, Fig. 2 illustrates 

the matching result for subject one. The subcutaneous struc-

ture in the MR segmentation (top) can be partially identified 

in the NIR scan (bottom) as well. The blue spots provide 

landmarks for better orientation and confirm a good align-

ment between the scans. Although the relationship between 

NIR intensity and tissue thickness is nonlinear, a negative 

correlation is clearly visible (thick skin corresponds to low 

intensities). This relationship is perturbed by angle influ-

ences, which are small in the center of the patch and increase 

to the sides. They are visible as darker red regions at the 

outer margins (cf. Fig 2, bottom), which seem to indicate a 

higher thickness where there is none.  

  

B. Tissue Thickness Estimation 

 

 All proposed kernel functions yielded tissue thickness 

estimation errors below 0.5 mm. The resulting RMS as well 

as MA errors are in a similar range for all subjects. Table 1 

clearly shows that the ARD kernel gave superior accuracy 

compared to the isotropic kernel version (11.2% higher for 

S1, 3.4 % for S2 and 9.4% for S3). Dropping the angle fea-

tures led to a small decrease in performance. For ARD the 

scaling factors γi were negative for all NIR features and 
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positive for the angle feature (except for S1, where it took 

small values around zero).  

 The last row of Table 1 lists the upper bound of the inter-

val [0, I90%]. For each subject 90% of all absolute errors fell 

into this interval. The upper bound falls below 0.6 mm for 

all subjects. 

IV. DISCUSSION 

 All results presented in the previous section suggest that 

the customized marker geometry delivers a reliable seed for 

the subsequent ICP refinement. This is essential since the 

algorithm is sensitive to run into local error minima, if the 

initial alignment of the two surfaces is not close to the opti-

mum already. This is particularly the case for surfaces lack-

ing prominent landmarks such as the forehead. The evidenc-

es are threefold: The ICP and the GPs yielded small errors, 

both below 0.7 mm (cf. Table 1). Finally, visual inspection 

(cf. Fig. 2) of subcutaneous landmarks also confirmed accu-

rate alignment. Possible errors introduced by the marker 

were kept as small as possible: segmentation errors from MR 

and CT range around half the voxel resolution, and tracking 

and deformation accuracy are below 0.3 mm. In contrast, it 

was difficult to judge the accuracy of the ground truth 

matching in [4] and [7]. A supporting correlation refinement 

of the ICP based on the features seems helpful, but as dis-

cussed in [4], is not applicable for all subjects. Reasons in-

clude prominent vessels across the forehead, which hardly 

affect the tissue thickness, or increased angle influences of 

the incident laser beam. The latter play an even bigger role 

for the galvanometric scanner used here (cf. angles in Table 

1) and superpose the informative features. A non-optimal 

ground truth matching may hence have caused higher and 

more heterogeneous estimation errors across subjects in [4]. 

Here, we demonstrate for the first time very low estimation 

errors for data from a galvanometric laser scanner. The er-

rors are homogeneous across subjects (all around 0.3 RMS). 

Nevertheless, the results confirm the feasibility of sub-

millimeter accuracy in [4] as well as the beneficial effect of 

an additional angle feature found in [7]. However, the latter 

has been found to be small. Automatic relevance detection 

(ARD) was able to outperform the isotropic kernel in every 

case and found individual scaling factors for all features by 

the means of Bayesian inference instead of the time-

consuming grid search applied in [4]. The isotropic kernel 

scales up the angle effects within the NIR features as well. It 

cannot fully exploit the heterogeneity of informative content 

among different features. By introducing a separate factor in 

the ARD version, the angle feature can compensate for these 

angle dependent effects within the NIR features. 

 In fact, the overall accuracy is bounded by the ground 

truth, i.e. measurement resolution. But, the presented results 

already meet the project goal of sub-millimeter accuracy and 

are below fixation errors achieved with common mask sys-

tems.  

V. CONCLUSION 

 Using an enhanced ground truth matching, Gaussian Pro-

cesses were able to predict tissue thickness with high accu-

racy from NIR data recorded with a galvanometric laser 

scanner. Automatic relevance detection as well as the angle 

feature yielded promising results for all subjects studied. The 

results form a solid basis for a more containing study inves-

tigating more subjects and the impact on a tracking algo-

rithm in future research. 
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TABLE I 

DATA CHARACTERISTICS, MATCHING ERRORS AND PREDICTION ACCURACY  

 
Subject 1 

(S1) 

Subject 2 

(S2) 

Subject 3  

(S3) 

Data Samples 888 945 790 

αmean ± αstd [°] 37.1±10.6 39.0±10.6 32.4±10.4 

xstd /ystd /zstd [mm] 0.19/0.20/0.46 0.23/1.67/0.86 0.06/0.05/0.05 

ICP: RMS [mm] 0.648 0.465 0.500 

RMS (MA) error [mm]  

GP: kiso, with angle 0.366 (0.270) 0.344 (0.268) 0.308 (0.232) 

GP: kard, w/o angle 0.336 (0.235) 0.346 (0.266) 0.285 (0.211) 

GP: kard, with angle 0.325 (0.225) 0.332 (0.255) 0.280 (0.205) 

I90% [mm] 0.499 0.559 0.442 
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