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Abstract— The cerebellum plays a critical role for 

sensorimotor control and learning. However dysmertria or 

delays in movements’ onsets consequent to damages in 

cerebellum cannot be cured completely at the moment. To foster 

a potential cure based on neuroprosthetic technology, we 

present a frame-based Network-on-Chip (NoC) hardware 

architecture for implementing a bio-realistic cerebellum model 

with 100,000 neurons, which has been used for studying timing 

control or passage-of-time (POT) encoding mediated by the 

cerebellum. The results demonstrate that our implementation 

can reproduce the POT functionality properly. The 

computational speed can achieve to 25.6 ms for simulating 1 sec 

real world activities. Furthermore, we show a hardware 

electronic setup and illustrate how the silicon cerebellum can be 

adapted as a potential neuroprosthetic platform for future 

biological or clinical applications. 

 

I. INTRODUCTION 

The cerebellum critically mediates the precise timing of 
muscle activations to achieve smooth and robust motor 
control. Such representation of the passage-of-time (POT) 
over a range of tens to hundreds of milliseconds is essential 
for organizing movements of different body parts into a 
coordinated action[1]. Errors in POT encoding consequent to 
cerebellum damages can lead to dysmetria or delays in 
movement onsets in these patients[2]. A complete cure for 
such condition is still missing at the moment, while it is 
impacting millions of patients worldwide. To foster a 
potential cure based on neuro-prosthetic technology, an 
efficient computational platform that can favorably mimic 
the complex function of the cerebellar neural network will be 
important.  Fig. 1 shows a conceptual closed-loop system for 
a cerebellar POT  functionality prosthesis. 
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Fig. 1: The conceptual closed-loop system for cerebellum 

Passage-of-time (POT) prosthetic. CS is a conditional stimulus 

while The US is an unconditional stimulus. MF is the mossy 

fiber and CF is the climbing fiber, PKJ is the Purkinje cell.  

Hardware implementations of cerebellum neural 
networks for neuro-prostheses have already attracted the 
interest of neuroscientists and engineers[3][4]. Bamford et al 
[3] has designed a VLSI field-programmable mixed-signal 
array to produce the eyeblink conditioning performances by 
modeling the cerebellum system. This has been fabricated as 
a core on a chip prototype intended for use in an implantable 
closed-loop prosthetic system aimed at rehabilitation of 
associated behavior. While they have demonstrated a proof-
of-concept of success in their implementation, a highly 
simplified neural model with abstract modeling of cerebellar 
information processing is used in the work. Such 
simplification is convenient for hardware implementation, 
but when direct physiological correspondence for 
quantitative comparison with the biological system is 
required, such model becomes insufficient. In contrast, 
Yamazaki and Tanaka’s model [5] is more biologically 
realistic and pays specific attention to the role of the 
granular-Golgi layer  in timing and gain control by the 
cerebellar cortex to reproduce experimental results. 
However, this comes with the cost of a significant increase in 
the size and complexity of the computational model in order 
to produce a robust system behavior. As such, an efficient 
implementation is required to overcome these computational 
challenges, especially when real-time application is required. 

In this work, we have developed an FPGA-based network-

on-chip (NoC) hardware architecture for implementing the 

granular layer of random projection cerebellum model 

presented in [5]. Our design is potentially applicable for in 

vivo experimental or clinical application. 
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Fig. 2: A conceptual FPGA based network on chip hardware architecture. The figure on the left is the scalable n by m structure of 

frame based network on chip system. It contains n*m neural processors, n*m routers and one global controller. This architecture 

can be scaled up depending upon on the required model. In this paper, we implemented a network on chip system which contains 48 

processors (100,000 neurons). 

II. HARDWARE ARCHITECTURE DESIGN 

To implement the POT model, we proposed a frame-based 

network on chip (NoC) hardware architecture on FPGA. The 

conceptual structure is shown in Fig.2. We implemented a 

NoC system containing 48 processors and a frame master. 

A. Neural computing 

The neural processor data path is shown in Fig. 3. Two 

types of neurons are implemented in the processor, the 

granule cell (GR) and the Golgi cell (GO). The neurons are 

modeled as conductance-based, leaky integrate-and-fire 

units. Both models use the same hardware architecture but 

with different parameters. Each granule cluster, containing 

100 granule cells, connects to one Golgi cell. The activities 

(1 or 0) of all the 100 granule cells will be first calculated; 

whilst an accumulator will add all of them together and at the 

100th clock cycle send the summated value to the Golgi cell 

model as an excitatory input. 

Fig. 3B details the data path inside the neural model, 

which takes two computing stages: ion channel activities and 

integration. Each stage takes 4 clock cycles. Because of the 

parallel computational architecture, the latency in each 

individual path has to be consistent; therefore appropriate 

delay blocks (the rectangular blocks) are added as necessary. 

Fig. 3C shows the sub-component circuits, including the 

inhibition and excitation circuits and FIFO-based delay 

circuits. Since each neural processor implements 2000 

granule cells and 20 Golgi cells, a pipelining technique is 

applied for reducing hardware resources.  A long pipelining 

stage is required for storing granule cells calculation 

intermediate values. A First-In First-Out (FIFO) based delay 

circuit is designed for achieving long computational stages.  

B. Network-on-chip 

To manage the transmission of action potentials between 

Golgi cells and granule-cell clusters we have developed a 

NoC infrastructure.  This system allows for arbitrary 

connectivity between Golgi cells and granule-cell clusters.  

Each processing element is connected to a router through 

which the action potentials are communicated. The routers 

are connected together in a mesh topology as shown in Fig. 

4b. 

When a Golgi cell produces an action potential the 

interface fetches a list of destination granule-cell clusters 

from memory, and an individual packet is generated to be 

sent to each of these destinations within the network. The 

connectivity of the neural network can be updated by 

adjusting the contents of the memory. A user may alter the 

contents of the memory to adjust the connectivity by 

injecting configuration packets into the network. This can be 

done at start-up or part way through simulation if required by 

halting the system using the global frame master. 

    The packet format is shown in the lower panel of Fig.4. 

Packets are classified by the setting of a 2-bit type identifier. 

The generated spike packet contains the address of the 

granular cell, allowing for the routers to direct the packet to 

the correct processing elements.  Each granule-cell cluster 

summates the packets received.  This value is used as an 

input into the granule-cell clusters. Packets are transmitted 

between routers using a 4-phase asynchronous protocol and a 

parallel data bus.  The routers are output buffered using a 2-

deep FIFO memory element.  

C. Frame master 

In order to maintain synchronicity within the system a 

frame master is used.  The master is responsible for ensuring 

that all packets are transmitted to their destination before the  
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Fig. 3: The neural processor structure and the data path of 

neural model.  (A) shows the conceptual structure of the 

processor and (B) shows the data path of the neural model. (C) 

shows the sub-component circuits: excitation (inhibition) 

circuits and FIFO based delay circuits. The triangle blocks 

denote the NMDA and AMPA receptor conductance. The 

mathematic model is described in equation(1-3) in [5].  

processing elements start to process the next time step. This 

ensures that the granule-cell clusters receive all their updates 

within the correct time period. For example, as is shown in 

Fig. 5, the duration of the network communication depends 

on the load of the network, which is determined by the 

frequency of Golgi cells spiking and the Golgi cell 

topologies. This varies for each frame. In each frame, once 

the first Golgi cell spike event is released (at time t2), the 

router starts to process the corresponding synaptic packages. 

After all 20 Golgi cell spike events are computed (at time 

t3), the processor’s duty in frame 1 is finished. Then the 

neural processor needs to start computing the next 20 Golgi 

cell activities for frame 2. However, in frame 1 after time t3, 

the network is still processing the current 20 Golgi cell 

communication tasks.  Therefore there is extra time allocated 

for the network to finish the first frame, before frame 2 

begins. As results of this, the frame master generates a low 

level signal that disables the processor clock for the t3 – t4 

period until the network has completed the current frame 

routing task. The frame master then enables the processor to 

allow it to start computing again. 

III. RESULTS 

      Fig. 6a shows the spike patterns of 40 granule cells 

randomly chosen from different granule-cell clusters. These 

granule cells show different temporal activity patterns. In  

 

Fig. 4: Example of mapping of neural network to a network-on-

chip; a) A sample Golgi neural network; b) Each core may 

model multiple Golgi cells. When the Golgi cell X, produces an 

action potential, individual packets are transmitted to teach 

connected granule-cell clusters which are distributed through 

the network.   

 
Fig. 5:  The frame master performances. In the frame 1, the 

router processing time is longer than the processor’s, so the 

frame master temporally disabled the neural processor at t3-t4 

periods until the router finished its current traffic loads. While 

in the frame 2 and 3, because of the routing time is shorter than 

the processor time, the processor clock was continuously 

running.   

 

contrast, the Golgi cells fire spikes rather regularly. Fig. 6b 
shows the similarity index of the activity pattern against the 
time shift Δt (Eq. (9) in [5]), which measures the temporal 
evolution of GR cell firing pattern.  The similarity index 
monotonically decreases with |Δt|, indicating that the 
populations of active granule cells change gradually over 
time such that no active granule-cell clusters appear more 
than once throughout the stimulation, which reveals a one-to-
one correspondence of GR population and time interval 
representation. The hardware simulation result is well 
comparable with software simulation with mean error being 
less than 5% (Fig. 6b). The error is mainly caused by 
hardware truncation errors. Fig. 6c shows the reproducibility 
index (Eq.(10) in [5]) from the hardware simulation, which 
compares the activity pattern generated by two different  
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Fig. 6: (a): Spike patterns of 40 granule cells and Golgi cells chosen randomly in an implemented granular layer. (b): Comparison of 

similarity index between software and FPGA simulations. The grey areas are the standard deviations of the hardware results. The 

errors between the two results are shown at the bottom. (c): The reproducibility index is calculated by equation (5). (d): A 

hypothetical in vivo closed-loop experimental setup for cerebellum rehabilitation. (e): An electronic setup to demonstrate the 

feasibility of the in vivo experiment. (f): The real-time output discrete spikes and the frame-based signal. (g): The comparison of the 

speed of NoC and bus hardware architectures. 

 

Poisson spike inputs. The reproducibility index remains high 
(>0.7), indicating that the POT encoding will remain robust 
despite of variability of signals in the two stimulating inputs. 
This shows that the neuron population can maintain 
consistent POT representation across trials when, for 
instance, learning of delayed eyeblink conditioning over 
multiple training sessions is to be incorporated in the model 
[5]. 

We illustrated a hypothetical in vivo experimental setup 
for closed-loop prosthetic application using our FPGA 
granular layer system in Fig. 6d. Fig. 6e shows an electronic 
system setup to demonstrate such an experiment. A Virtex-5 
board is employed to simulate the biological spikes 
conveyed by MFs, the input discrete spikes are modeled as 
two 5Hz and two 30Hz Poisson spike trains in 4-bits signals. 
The proposed silicon granular layer is implemented on the 
Virtex-7 board with the I/O interface for displaying the 
system output on the oscilloscope in real-time (Fig. 6f). The 
displayed GR spikes were taken from three neural 
processors. The frame-based signal is also shown which is 
used to monitor and verify system processing behaviours. In 
Fig. 6g, our system can complete 1s of simulation in as little 
as 25.6ms, which is much faster than many core based bus 
implementation system (around 1s).  

IV. CONCLUSION  

The goal of the work has been to implement a real-time 
cerebellar granular layer model onto a FPGA hardware 
platform utilizing a NoC hardware architecture. The major 

contributions are: 1) An efficient FPGA-based NoC 
hardware architecture is proposed for implementing a large-
scale cerebellar granular-Golgi layer model for POT 
encoding. 2) Our design can be a potential neuro-prosthetics 
tool for future experimental and clinical applications owing 
to its high computational power and high scalability.  
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