
  

 

Abstract— Rehabilitation of arm and hand function is 

crucial to increase functional independence of stroke subjects. 

Here, we investigate the technical feasibility of an integrated 

training system combining robotics and functional electrical 

stimulation (FES) to support reach and grasp during functional 

manipulation of objects. To support grasp and release, FES 

controlled the thumb and fingers using Model Predictive 

Control (MPC), while a novel 3D robotic manipulator provided 

reach support. The system's performance was assessed in both 

stroke and blindfolded healthy subjects, where the subject's 

passive arm and hand made functional reach, grasp, move and 

release movements while manipulating objects. The success 

rate of complete grasp, move and release tasks with different 

objects ranged from 33% to 87% in healthy subjects. In severe 

chronic stroke subjects especially the hand opening had a low 

success rate (<25%) and no complete movements could be 

made. We demonstrated that our developed integrated training 

system can move the passive arm and hand for functional pick 

and place movements. In the current setup, the positioning 

accuracy of the robot with respect to the object position was 

critical for the overall performance. The use of a higher virtual 

stiffness and including feedback of object position in the robot 

control would likely improve the relative position accuracy. 

The system has potential for post-stroke rehabilitation, where 

support could be reduced based on patient performance which 

is needed to aid motor relearning of reach, grasp and release. 

I. INTRODUCTION 

Stroke survivors often have a diminished arm and hand 
function, which reduces their ability to interact with objects, 
like drinking or opening a door. Rehabilitation of arm and 
hand function is important to increase functional 
independence of stroke subjects. To assist the rehabilitation 
process, a single rehabilitation solution, which combines 
reach support with grasp and release training is desirable. 

In the past decades robotic technology has emerged to aid 
stroke rehabilitation. Robots are particularly useful to train 
highly repetitive tasks, which do not require the continuous 
presence of a therapist. Many robotic systems capable of 
supporting or training the arm during reach are available [1]. 
Some robotic systems to support the hand have been 
developed [2]. However, hand robotics require complex 
mechanisms and is therefor not attractive for integrated hand 
and arm training, especially not in a home environment.  
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Besides therapeutic robotics also functional electrical 
stimulation (FES) can restore hand function in stroke 
survivors. FES of finger and thumb muscles can be beneficial 
for stroke subjects in relearning functional grasp and release 
movements [3]. However, current commercially available 
systems use an open loop approach, which limits 
performance and requires continuous user input [4]. To 
increase training independence, an approach for training 
without the need for a therapist being continuously present is 
preferred. Recently, we have developed a Model Predictive 
Control (MPC) approach to selectively control fingers and 
thumb for grasp and release with FES [5]. The strength of 
this approach is the use of a personalized model relating the 
stimulation level to the resulting movement to overcome the 
high variability between subjects [6]. In addition, this method 
has potential for application in an automated system allowing 
for therapist-independent training. 

The overall goal is to develop an integrated post-stroke 
training environment for home use by combining robotic arm 
support and FES support for grasp and release. For relearning 
after stroke a high level of patient involvement is required 
[7], therefore a training system should focus on adapting 
support to the ability of the individual patient [8,9]. However, 
as a first step, we will focus on full support of movement (in 
which the subject is passive) in healthy subjects and chronic 
stroke subjects. The aim of this paper is to demonstrate the 
feasibility of a combined robotics-FES rehabilitation system 
for full support of functional object manipulation tasks. Full 
support will be the most challenging from a technical point of 
view and is therefore considered here. 

II. METHODS 

A. Subjects 

Two stroke subjects (S1-S2) and two healthy subjects 
(H1-H2) participated, see Table I. The affected side for the 
stroke subjects and the dominant side for the healthy subjects 
was supported. The study was approved by the local ethics 
committee and all subjects gave written informed consent. 

TABLE I.  CHARACTERISTICS OF THE PARTICIPATING SUBJECTS 

 S1 S2 H1 H2 

Age 62 67 25 28 

Gender M M M M 

Hand R R R R 

ARAT 3 11 n.a. n.a. 

Months +stroke 160 112 n.a. n.a. 
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Figure 1. Robotic device used to position the arm in space [10]. The 

active rotational axes are indicated with the dotted lines. The subject's 

arm is supported at the lower arm using an arm cuff; the device provides 
adjustable gravity support and guidance in the preferred movement 

direction. The range of motion is indicated by the grey lines. 
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Figure 2. Overview of electrode placement on the dorsal (a) and palmar 

side (b) of the arm and hand. Electrodes are placed above the finger 
extensors (1..3), finger flexors (4..6), abductor pollicis longus (7), 

opponens pollicis (8) and the flexor pollicis brevis (9). Two ground 

electrodes (G) were used for each of the two stimulator device. 

B. .Experimental setup 

1) Robotic device for reach support 
A custom-built robotic device was recently developed 

(Demcon, Enschede, The Netherlands) [10]. This device (see 
Fig. 1) is a 3D end effector, which compensates gravitational 
forces passively and provides active guidance with damper 
based drive trains. These two key features make the device 
inherently safe by the use of low power motors and 
decoupling of the motors and the load. In addition, the device 
is compact, has low weight and allows for fast donning and 
doffing. 

The device can apply forces to the subject's arm using 
three active and three passive degrees of freedom. An 

adjustable spring, mounted parallel to the actuator of the  
axis, passively compensates for the weight of the subject's 
arm. The rotation of links l1 and l2 are actuated with two 
additional actuators mounted in the base. At the end point a 
passive gimbal is mounted between the linkage and the arm 
cuff, which allows for arm rotations relative to the linkage. A 
six degrees of freedom force sensor mounted at the end of the 
linkage measures the interaction forces between the arm and 
the linkage. With the encoders on the active axes and 
potentiometers on the passive gimbal the arm and hand 
positions are obtained. The robot's embedded computer 
(Bachmann electronic GmbH, Feldkirch, Austria) received 
reference force setpoints from an xPC target computer (The 
Mathworks, Natick, USA). 

2) MPC and FES to support grasp and release 
We recently developed a model predictive controller 

(MPC) for electrical stimulation of finger muscles to 
facilitate grasp and release [5]. The same method was applied 
in the current study to control opening and closing of the 
hand. The obtained system model was used by the MPC [11] 
to calculate the optimal stimulation amplitudes in order to 
reach the reference finger angles. 

Two custom-built electric stimulators (TIC Medizin, 
Dorsten, Germany), each having three independent 
stimulation channels, stimulated the finger and thumb 
muscles. In total nine electrodes were placed. Three 

stimulator channels were used for targeting thumb muscles 
(abductor pollicis longus, opponens pollicis and flexor 
pollicis brevis), the other three channels were used through a 
multiplexer for targeting both the flexor digitorum 
superficialis muscle (three electrodes) and the extensor 
digitorum communis electrodes muscle (three electrodes). 
During grasp tasks the flexor electrodes were activated and 
during release tasks the extensor electrodes were activated. 
The electrodes were placed at positions evoking selective 
movement of individual fingers to allow for more selective 
finger control, see Fig. 2. As the ring and little finger were 
less selective and often respond simultaneously, they were 
targeted with a single electrode. 

A VisualEyez (Phoenix Technologies, Burnaby, Canada) 
motion capture system was used to track positions of active 
LED markers on hand and fingers. Three markers were based 
on the back of the hand to represent the hand coordinate 
frame. In addition, two markers were placed on the proximal 
phalanges of each finger. From these markers 
metacarpophalangeal (MCP) joint angles were calculated. 
For the thumb angles in the plane of the coordinate frame 
(flexion/extension) and perpendicular to the coordinate frame 
(abduction/adduction) were calculated. 

The measured marker motions were sent to the xPC target 
computer. The MPC system was implemented on this 
computer using the marker motions to calculate finger angles 
and control the fingers towards reference angles. Together 
with the generation of set point forces for the robotic 
manipulator, the xPC target computer thereby provided 
synchronous control of reach, grasp and release. 

C. Experimental protocol 

Initially, the electrodes were placed on the target muscles, 
based on visual inspection of the evoked responses. In 
addition, maximum stimulation amplitudes were determined 
for all electrodes. The maximum was determined by 
occurrence of one of the following three events: subject 
discomfort, crosstalk to other muscles or saturation of the 
response, which was in general the first event to occur. When 
all electrode positions were determined, the arm was fixed in 
the cuff of the robotic manipulator and the passive weight 
compensation was adjusted for the subject's arm weight.  
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Figure 3. Example of the controlled movement in a healthy subject: a) reach to grasp, b) grasp and move and c) objects release. 

Subsequently, an initialization procedure was started to 
obtain a subject specific model relating the input stimulation 
amplitude to the resulting finger movement. During this 
procedure each electrode was activated with random 
stimulation amplitudes up to the determined maximum while 
the subject was relaxed. The robot was in a fixed position 
slightly above the table in front of the subject. This position 
was later used as a starting position for the movements. 

The Action Research Arm Test (ARAT) [12] was used as 
a test bed for passive grasp and release movements. Four 
objects of the ARAT (the wooden ball (Ø 7.5 cm) and three 
cubes: 2.5 cm, 5 cm and 7.5 cm) were selected to evaluate the 
system with objects of different weight, size and shape. The 
respective weights of the objects were 0.14 kg, 0.01 kg, 0.09 
kg and 0.3 kg, for the ball and the cubes ordered by 
increasing size. Coordinates representing three positions were 
pre-programmed into the robot: A) a starting position, B) a 
position were the ARAT objects were initially placed (on the 
table in front of the subject), and C) a target position were the 
objects had to be moved to.  

The reference trajectories followed a minimum jerk 
profile to move between two defined positions with a 
predefined duration. A fixed virtual stiffness of 100 N/m was 
implemented to let the force controlled robot guide the arm 
towards the reference trajectory based on the measured 
position. 

1) Task specification 
During all tasks the subjects were asked to relax. The 

healthy subjects were blindfolded to prevent voluntary 
interference. Tasks were repeated five times for each object 
for both fast movement (5.5 seconds in total) and slow 
movement (24 seconds in total). The movement was divided 
in six subtasks:  

1.  move from the start position to the object 

2.  open the hand for grasp 

3.  close the hand while holding the robot in position 

4.  move and hold the object 

5.  position the hand for release, and 

6.  release the object. 

First the robot was set to keep the arm in the starting 
position. Next, the robot and MPC were set to follow 

reference trajectories according to the described subtasks. 
Subtasks 1 and 2 overlapped in time to increase smoothness 
of movement. After object release the hand was moved back 
to the starting position to be ready for the next trial. When the 
object was grasped successfully and released at the target 
position, the trial was marked successful. Otherwise, the 
subtask on which the movement failed was logged. When the 
robot had returned to the starting position, the operator 
replaced the object for the next object. 

D. Recordings and data analysis 

The primary outcome measure was the success of the 
functional object manipulation task for the selected ARAT 
objects: wooden ball (Ø 7.5cm), small cube (2.5cm), middle 
sized cube (5 cm) and large cube (7.5 cm). Success rates for 
the different objects were logged for all subjects. In addition 
the success rates for the subtasks were logged. Trials were 
aborted when a subtask failed; therefore the number of 
evaluated trials per subtask depends on the success of all 
preceding subtasks. 

Interaction kinetics was a secondary outcome measure. 
Kinetic data obtained from the robot's force sensor was used 
to estimate voluntary interference by the subject. In addition, 
kinematic patterns of hand position were obtained from the 
robot's sensors and finger joint angles were obtained from the 
motion capture data. The performance in tracking the hand 
and finger reference trajectories was evaluated.  

III. RESULTS 

Examples of the different hand states (hand open, object 
grasp and object release) controlled with MPC are shown in 
Fig. 3  

A. Success rates 

In Table II the success rates of the full reach, grasp, move 

and release movement sequences with the different objects 

are shown. The successes and failures of all trials in healthy 

subjects and stroke subjects distributed over the different 

subtasks are presented in Fig. 4. In the healthy subjects the 

majority of trails was finished successfully. In healthy and 

stroke subjects positioning of the robot had high failure 

rates. In the stroke subjects, hand opening was only 

successful in a few trials and none of the objects was 

successfully grasped. For the stroke subjects, no data was 

available for moving the object, positioning the hand for 
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Figure 4. Causes of failure in healthy subjects (a) and stroke subjects (b). 
Bars indicate occurrences of successful trials (gray) and failures (white) 

for each of the following subtasks: positioning hand for grasping (POSg), 

opening hand for grasping (OPEN), grasping the object (GRASP), hold 
and move the object (HOLD), position the hand for object release at the 

target position (POSr) and release the object at the target position 

(RELEASE). 

 

Figure 5. Measured arm/hand positions and finger angles (solid) 
compared to reference positions and angles (dashed) for trials with a 5cm 

cube for subjects H1 (top). Thumb and finger angles are reported relative 

to the subject's neutral position. Angles were defined zero when the 
subject relaxed his hand and stimulation was off 

release and releasing the object, since all trials had failed 

before object movement could occur. 

TABLE II.  SUCCESS RATES OF COMPLETE OBJECT MANIPULATION 

TASKS 

 S1 S2 H1 H2 

Age 62 67 25 28 

Gender M M M M 

Hand R R R R 

ARAT 3 11 n.a. n.a. 

Months +stroke 160 112 n.a. n.a. 

 

In S1 the electrical stimulation was successful outside the 
robot, however when the arm was placed in the arm cuff of 
the robot, the finger flexors did not respond to the stimulation 
anymore, likely due to skin/electrode movement with respect 
to the muscle. Therefore when this observation was made the 
other objects were not evaluated to save time as this would 
not provide new information. In S2 the stimulation of grasp 
and release was relatively successful, however the middle 
finger had high tonus and did not extend sufficiently which 
caused pushing away of the larger objects. Therefore 
evaluation of the largest cube was omitted. For the small 
cube, reach was mainly successful but the grip was not firm 
enough to prevent slippage of the object. 

B. Tracking performance 

Fig. 5 shows time series of arm/hand movement and 
finger movement during multiple trials in subject H1. The 
performance of tracking the reference positions was 
evaluated separately for arm movement and finger 
movement. The arm position tracking RMS errors averaged 

over all trials was 69.6  17.5mm and 145.1  27.8mm for 
healthy subjects and stroke subjects respectively. Thus the 
positioning errors in stroke patients were about twice as large 
as in the healthy subjects. Steady state errors for opening the 

hand for grasp in healthy subjects were 14.6  11.0, 18.8  

16.2 and 19.1  11.6 for index, middle and ring finger 

respectively and 18.5  12.6 and 21.4  14.4 for thumb 
abduction and extension respectively. In the stroke subjects 

hand opening steady state errors were 32.5  9.1, 25.5  7.7 

and 11.2  6.3 for index, middle and ring finger respectively 

and 8.2  6.3 and 6.9  3.6 for thumb abduction and 

extension respectively. Angular errors of ~20 will lead to a 
displacement of ~3cm at the fingertips, depending on the 
finger length. 

IV. DISCUSSION 

In this study we showed the technical feasibility of using 
a system combining robotics and functional electrical 
stimulation for functional tasks in which the subject was 
passive. The high success rates in healthy subjects, together 
with the fact that the failure rate in stroke subjects was 
partially influenced by technical limitations, indicate the 
potential of the system for application in post stroke 
rehabilitation. 

A. Technical limitations 

Two technical limitations can be identified after 
evaluation of the current system: 1) a possible mismatch in 
programmed object locations and actual object locations and 
2) interference of the robotic arm cuff with the electrical 
stimulation outcome. 

Currently the object location was pre-programmed in the 
robot controller and the applied virtual stiffness was 
relatively low. As the subjects are passive, already small 
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positioning deviations can result in a failure. However, for 
future systems we suggest to incorporate active user 
involvement (also desired for rehabilitation) in combination 
with intention detection, which improves the positioning 
accuracy and reduces the number of failures, as the user can 
then actively steer the system to the desired position.In 
subject S1, the arm connection of the robot might have 
influenced the electrical stimulation responses. Currently, the 
cuff of the robot is attached over the middle of the forearm 
and thus placed over the electrodes. A redesign of the arm 
connection is suggested to remove this interference problem. 

B. Clinical implications 

Fully supporting the reach, grasp and release movements 
will be a first step towards an integrated system for 
rehabilitation after stroke. To apply this system in the clinic 
or in a home environment, two important modifications are 
required before the system can have clinical merit: 1) 
donning and doffing time should be reduced, including a 
more mobile finger measurement system, 2) support should 
be tailored to the ability of the individual patient instead of 
full support. 

To reduce donning time, array electrodes [14] could be 
included to automatically search for the best electrode 
positions. To reduce MPC initialization time, intelligent 
solutions are needed, like a form of initial automated 
electrode testing [14] and recursive model estimation (e.g. 
[15]). In addition, models obtained from previous sessions 
might be used as a starting point. For clinical application also 
a more compact and more plug and play solution is needed to 
measure finger motion. Measurement gloves [16] or 
commercially available devices like Microsoft Kinect [17] or 
LEAP motion [18] might be used as a more portable solution 
for feedback of finger angles. 

For rehabilitation purposes, it is desired that the patient 
can control the movement [13]. To promote motor relearning, 
the amount of support should be based on patient 
performance such that the patient is maximally active and 
still able to complete the task [9]. Therefore iterative learning 
control [8] or other assist-as-needed approaches (e.g. [9]) are 
necessary to use the current system successfully for 
rehabilitation.  

V. CONCLUSION 

A combination of Model Predictive Control of FES and 
robotic arm support can be successful in supporting 
functional tasks. With the mentioned further improvements, 
the current system has great potential for support of 
movement during post-stroke functional training. Due to the 
compactness of the system, future versions might also 
become applicable in a home environment, allowing for 
intensive therapy. For therapy after stroke, the current 
approach should be extended towards an assist-as-needed 
approach with user intention detection to maximize patient 
involvement. Benefits and feasibility of such an approach 
should be further investigated. However, since passive 
movement has been shown technically feasible, we are 
confident that reducing the support to engage the patients will 
be also feasible with the current system. 
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