
  

  

Abstract— The best-performing brain-machine interfaces 
(BMIs) to date decode movement intention from intracortically 
recorded spikes, but these signals may be lost over time. A way 
to increase the useful lifespan of BMIs is to make more 
comprehensive use of available neural signals. Recent studies 
have demonstrated that the local field potential (LFP), a 
potentially more robust signal, can also be used to control a 
BMI. However, LFP-driven performance has fallen short of the 
best spikes-driven performance. Here we report a biomimetic 
BMI driven by low-frequency LFP that enabled a rhesus 
monkey to acquire and hold randomly placed targets with 99% 
success rate. Although LFP-driven performance was still worse 
than when decoding spikes, to the best of our knowledge this 
represents the highest-performing LFP-based BMI. We also 
demonstrate a new hybrid BMI that decodes cursor velocity 
using both spikes and LFP. This hybrid decoder improved 
performance over spikes-only decoding.  Our results suggest 
that LFP can complement spikes when spikes are available or 
provide an alternative control signal if spikes are absent. 

I. INTRODUCTION 

Brain-machine interfaces (BMIs) are being developed to 
serve as assistive devices for individuals with movement 
disabilities. The best-performing BMIs to date have decoded 
movement intention from multiunit spike activity [1], and 
BMIs driven by spikes recorded from a similar type of 
intracortical multielectrode array are now being used by 
people enrolled in clinical trials to control a computer cursor 
[2], [3] or robotic limb [4]. Over time arrays often lose their 
ability to record well-isolated spikes [5], [6], thereby 
seemingly limiting the BMI’s useful lifespan. However, the 
recent proposition to decode threshold crossings (i.e. accept 
all sufficiently large neural action potentials but make no 
attempt to ‘sort’ them into single-neuron activity [7], [8]) has 
been used to demonstrate record levels of performance at 
least 4.5 years after array implantation [1].  But what about 
electrodes that are unable to provide either single-neuron or 
multiunit spikes? And what happens ten years after 
implantation when possibly few, if any, channels are able to 
record spikes? Fortunately, numerous offline studies, such as 
[9], [10], have shown that reach kinematics can be decoded 
from another neural signal, the local field potential (LFP), 
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which is available from the same sensor. LFP can be 
informative about kinematics even when recorded from 
electrodes that do not record spikes [11], [12]. More recent 
studies have demonstrated closed-loop LFP-driven cursor 
control [13], [14]. Although these LFP-driven BMIs did not 
achieve target acquisition success rates as high as those 
previously shown with state-of-the-art spikes decoders [1], 
[15], they are an encouraging indication that LFP may 
provide an alternative BMI control signal. 

Offline decoding studies have also suggested that BMI 
performance can be improved by decoding both spikes and 
LFP together using a hybrid decoder [9], [10]. One closed-
loop study [16] has used LFP as a binary ‘go’ signal after 
which intended target was decoded from spikes alone.  
However, closed-loop control of cursor kinematics using a 
hybrid decoder has not previously been tested.  

In this study we evaluated cursor control using both LFP-
only and hybrid BMI designs based on decoding the motor-
evoked potential (MEP) recorded on two 96-electrode arrays. 
The MEP, which is a low-frequency LFP feature, is highly 
unlikely to be contaminated by spikes [17] and therefore is a 
good candidate neural feature both for providing an 
alternative neural signal when spikes are absent and for 
providing an additional source of information to augment 
spikes as part of a hybrid decoder. We found that the LFP-
driven BMI enabled a monkey to perform two different target 
acquisition tasks at over 98% success rate. Furthermore, we 
found that incorporating LFP into a hybrid decoder increased 
performance when compared to a state-of-the-art spikes-only 
decoder. 

II. METHODS 

A. Behavioral Tasks 
All procedures and experiments were approved by the 

Stanford University Institutional Animal Care and Use 
Committee. A rhesus macaque (monkey R) was trained to 
perform 2D target acquisition tasks by controlling a cursor 
with either his hand position or via a BMI. He was free to 
move his arm even during BMI use. Our Radial 8 Task was 
modeled after the task described in [18]. Targets alternated 
between the center of the workspace and one of eight 
pseudorandomly selected locations equally spaced along a 13 
cm diameter circle. A liquid reward was given after each 
successful trial in which the cursor was held inside a 3.4 cm 
wide acquisition area for a 300 ms hold period. The trial time 
limit was 8 s, and only trials from the center to one of the 
eight peripheral targets were analyzed. In the Random Target 
Task targets appeared randomly anywhere in a 20 x 20 cm 
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region immediately following the end of the previous trial. 
The monkey had up to 8 s to hold the cursor inside a 5 cm 
wide acquisition area for 500 ms.  

B. Neural Recording and Signal Processing 
Monkey R was implanted with two 96-electrode arrays (1 

mm electrodes spaced 400 µm apart; Blackrock 
Microsystems) using standard neurosurgical techniques [15] 
24-25 months prior to this study. One array was implanted 
into primary motor cortex (M1) and the other into dorsal 
premotor cortex (PMd) contralateral to the reaching arm. 
Voltage signals from each of the 192 electrodes were band-
pass filtered from 0.3 to 7500 Hz and then processed to 
obtain both multiunit spikes and MEP (Fig. 1). To extract 
spikes, the raw signal was first band-pass filtered from 250 to 
7500 Hz. A spike was then detected whenever the voltage 
crossed below a threshold set at the beginning of each day to 
be -4.5 × rms voltage. LFP was obtained by low-pass filtering 
the raw data below 500 Hz and clipping samples exceeding 
±300 µV to mitigate intermittent noise. MEP was then 
computed by taking the mean LFP voltage from the previous 
50 ms. The specific window length of 50 ms was chosen 
based on offline decoding and pilot closed-loop experiments; 
however, performance differed only slightly across the 25 to 
200 ms windows which we tested. In pilot studies we also 
found that an additional step was needed to improve closed-
loop cursor control. The positive MEP ‘after-potential’ 
following a reach (visible at around t = 0.6 s in Fig. 1B) 
caused the cursor to ‘spring back’ in the opposite direction 
shortly after movement was initiated. We addressed this 
problem by applying a half-wave rectification step where 
positive MEP values were set to zero while negative values 
were passed through. 

C. Neural Decoding 
At the start of each experiment we collected a training 

dataset of 500 arm-controlled Radial 8 Task trials using 
targets located 12 cm from the center. This data was used to 
train LFP-only, spikes-only, and hybrid velocity Kalman 
Filter (KF) decoders. All three decoders output a velocity 
command every 50 ms from input consisting of neural data 

from the previous 50 ms. For LFP-only decoding we trained 
a standard velocity KF (see [1]) using all of the data in the 
training dataset. At each time step the neural features, yLFP, 
were a 192×1 vector of MEP from each channel. When 
fitting the model we allowed a causal lag offset between LFP 
and kinematics; regression error was minimized when LFP 
led kinematics by 100 ms. No lag was applied when the KF 
was run in closed-loop. To help stabilize the cursor in the 
workspace during LFP-driven BMI use we added a relatively 
small ‘centering velocity’ to the decoded velocity that 
pointed towards the screen center with magnitude 0.15 · r s-1 
where r is the cursor’s distance from the center. To avoid 
giving the LFP decoder an unfair advantage we also tried 
adding this centering velocity to the spikes-only and hybrid 
decoders; this did not increase performance. 

For spikes-only decoding we used the FIT-KF algorithm 
[15]. Briefly, FIT-KF is a streamlined version of the ReFIT-
KF [1] and improves upon a standard KF by adjusting 
kinematics of the training data to better match the subject’s 
presumed movement intention. This decoder operated on 
yspikes, a 192×1 vector of spike counts from the previous 50 
ms. 

The hybrid decoder was built by simply combining the 
FIT-KF spikes decoder and the LFP velocity KF. This new 
decoder operated on a stacked feature vector yhybrid = [yspikes ; 
yLFP] which was mapped to kinematics by a stacked 
observation matrix Chybrid = [Cspikes ; CLFP]. A combined 
covariance matrix Qhybrid was then calculated from the 
training data and Chybrid. We note that the position-feedback 
innovation of the FIT-KF was applied to yspikes in the hybrid 
decoder, but not to yLFP. The hybrid decoder used the same 
kinematics dynamical state update matrix and noise model as 
the spikes decoder. 

D. Performance Measures 
In addition to success rate, the following metrics were 

used to quantify task performance: 

• Targets Per Minute: Number of successful trials 
divided by the continuous duration of the task.  

 

time (s)í��� � 1

�����

�í���

�����

vo
lta

ge
 (µ

V
)

reach direction-averaged MEP 

0°
45°
90°

135°
180°
225°
270°
315°

raw neural signal

motor-evoked potential

multiunit spikes

cursor velocity

���
��
�

�����
time (ms)

vo
lta

ge
 (µ

V
)

half-wave
rectify

high-
pass

low-
pass

A B

Kalman
Filter

 
Fig. 1.  (A) Overview of the hybrid spikes- and LFP-driven BMI. Raw neural data (black) is recorded from 96-electrode arrays in M1 and PMd. To extract 
multiunit spikes (orange ticks), the raw data is first high-pass filtered (top right, gray). A spike is then detected whenever this signal crosses below a 
threshold (orange line). LFP (bottom right, gray) is obtained by low-pass filtering the raw data. The MEP feature (blue) is then extracted by applying a 50 ms 
boxcar filter to the LFP. Cursor velocity is decoded from both MEP and spikes via a Kalman filter. (B) Example MEP recorded in PMd during arm reaches 
in eight different directions. Each trace corresponds to the average of 32 reaches. The target was presented at time 0. Dataset R-2013-07-30, elec. 174. 
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• Time to Target (TTT) for Radial 8 Task: Time 
elapsed between trial start and successful target 
acquisition, not including the required hold time. 

• Normalized TTT for Random Target Task: TTT 
divided by the straight-line distance between the 
current and previous target [14]. 

• Index of Performance (IP): A throughput metric 
inspired by Fitts’ law, 

  IP = ID / TTT, where ID = log2 D
W +1( )   

is the Index of Difficulty and depends on the reach 
distance, D, and target width W [13]. Faster 
acquisition of further and/or smaller targets yields 
higher IP.  

E. Contribution of LFP and Spikes to Hybrid Decode 
LFP’s and spikes’ respective contributions to decoded 

velocity during use of the hybrid BMI were visualized by 
evaluating, at each 50 ms decode time step, the kinematic 
state estimate of the KF [19] when the input neural feature is 
either [0; yLFP] or [yspikes ; 0].  

III. RESULTS 

A.  High Performance Using an LFP-only Decoder 
We evaluated the subject’s performance using an LFP-

only decoder on the Random Target Task for nine experiment 
days and on the Radial 8 Task for six of those days. Across 
14,593 trials of the Random Target Task the monkey had a 
99% success rate with normalized time to target of 0.14 ± 
0.15 s/cm (mean ± std). This corresponds to an Index of 
Performance of 1.81 bits/s. Fig. 2 shows the LFP-only 
performance on the Radial 8 Task. Across 1,679 trials the 
monkey acquired an average of 16.1 targets/min with a 
success rate of 98%. 

B.  Hybrid Decoding Outperforms Spikes-only Decoding 
We next evaluated the hybrid BMI. Both LFP and spikes 

contributed substantially to the decoded velocity, as shown in 
the example trials in Fig. 3. We compared hybrid decoding to 
FIT-KF spikes-only decoding on the Random Target Task on 
each of eight experiment days in an ‘ABAB’ block design. 
Across more than 2,000 trials each using the spikes-only and 
hybrid decoders, both decoders had success rates over 99.9% 
(difference not significant). As shown in Fig. 3 (inset), 
normalized times to target were slightly but significantly 
faster with the hybrid decoder (0.082 ± 0.090 s/cm, mean ± 
std) than with the spikes-only decoder (0.094 ± 0.072 s/cm; p 
< 0.001, two-tailed t-test). Normalized times to target using 
both the hybrid and spikes-only decoders were better than 
with the LFP-only decoder, which was evaluated on a 
different set of 9 experiment days (p < 0.001). Comparing the 
Index of Performance metric for each decoder yielded the 
same results. 

IV. DISCUSSION 

We found LFP to be an inferior but still effective 
alternative signal to spikes for BMI control. Our LFP-driven 
decoder enabled faster and more accurate cursor control than 
the previous best LFP-only performance reported by So and 
colleagues [13]. On a closely matched task we observed 16.1 
target acquisitions per minute at a 98% success rate, 
compared to the 10.6 targets/min at a 78% success rate 
achieved by So and colleagues with their best-performing 
monkey. Between-study differences in monkeys, neural 
signal quality, and experimental conditions preclude 
concluding what aspects of our system facilitated its 
relatively better performance. Nonetheless, we can identify 
two important novel aspects of our approach. First, we used 
two 96-channel arrays, compared to twenty channels in [13] 
and a single 96-channel array in [14]. Second, we decoded 

−120 120

−120

  120

y 
po

sit
io

n 
(m

m
)

x position (mm)

0 2 4 6 8
0

450

time to target (s)

nu
m

be
r o

f t
ria

ls

 
Fig. 2.  LFP-only decoder performance on the Radial 8 Task. Example 
cursor trajectories are shown for sixteen consecutive center out trials (two 
per target). All sixteen trials were successful. Cursor positions are shown 
every 10 ms. (Inset) Histogram of times to target for successful trials (98% 
of total) across six experiment days. Dataset R-2013-09-09. 
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Fig. 3.  Hybrid decoder performance. Example cursor trajectories to three 
consecutive targets during the Random Target Task are shown. Dashed 
squares represent the target acquisition areas and are numbered 
chronologically. Cursor position is shown for every 50 ms decode step. At 
each step we also plot the instantaneous velocity contribution from decoded 
spikes (orange arrows) and LFP (blue arrows). (Inset) Comparison of BMI 
performance using each type of decoder. Mean ± SEM normalized times to 
target across trials from all datasets are shown. * p < 0.001.  
Dataset R-2013-09-28. 
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only MEP from each electrode, whereas [13] decoded LFP 
power in multiple bands between 0 and 150 Hz. Flint and 
colleagues [14] also used MEP in addition to LFP band 
power, but they had fewer electrodes and did not half-wave 
rectify their MEP. Further studies that compare different 
decoding methods in the same animals will be needed to 
determine the optimal LFP feature(s) for BMIs. A good 
example of such work is the comparison of using different 
power bands and number of electrodes in [13].  

Furthermore, we’ve demonstrated that LFP can be 
combined with spikes in a hybrid decoder to improve BMI 
performance. While previous studies have used offline results 
to predict this result, we’ve now shown that this improvement 
can indeed be realized during closed-loop control despite 
presumed differences in controllability between spikes and 
LFP. To the best of our knowledge this is the first 
demonstration of closed-loop hybrid decoding of cursor 
kinematics. However, we observed only a small degree of 
improvement. This may be because in our study the spikes-
only control was already very good and better than LFP-
driven control. In future work we will test whether hybrid 
decoding is more beneficial when fewer channels with good 
spikes are available, as may be the case with degraded arrays. 

Overall, our results demonstrate that even if 
multielectrode arrays lose their ability to record spikes, as 
long as low-frequency LFP can still be recorded then it may 
be possible to combine this LFP with any remaining spikes to 
maintain high BMI performance. This improved robustness 
could potentially increase the useful lifespan and clinical 
viability of motor neural prostheses.  
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