
  

  

 
Abstract— Ensembles of single-neurons in motor cortex can 

show strong low-dimensional collective dynamics. In this study, 
we explore an approach where neural decoding is applied to 
estimated low-dimensional dynamics instead of to the full 
recorded neuronal population. A latent state-space model 
(SSM) approach is used to estimate the low-dimensional neural 
dynamics from the measured spiking activity in population of 
neurons. A second state-space model representation is then 
used to decode kinematics, via a Kalman filter, from the 
estimated low-dimensional dynamics. The latent SSM-based 
decoding approach is illustrated on neuronal activity recorded 
from primary motor cortex in a monkey performing 
naturalistic 3-D reach and grasp movements. Our analysis 
show that 3-D reach decoding performance based on estimated 
low-dimensional dynamics is comparable to the decoding 
performance based on the full recorded neuronal population.   
 

I. INTRODUCTION 

Spiking activity in ensembles of single neurons is known 
to show strong low-dimensional collective dynamics [1, 2]. 
These low-dimensional collective dynamics (‘neural 
trajectories’) are likely to reflect spontaneous and evoked 
activity in highly recurrent neuronal networks. In the case of 
motor cortex, they also likely reflect task complexity and the 
fact that the motor system ultimately controls a system, the 
skeletal-muscle system, with many fewer degrees of freedom. 
In the case of simple motor tasks, estimated neural 
trajectories are typically embedded in a much lower 
dimensional space than the number of neurons commonly 
recorded by microelectrode arrays (MEAs). It is not known, 
however, how much information these neural trajectories 
carry about movement parameters (e.g. kinematics), relative 
to the information available in the recorded full population.  

Here, we address this problem on ensembles of single 
neurons simultaneously recorded via 96-MEAs implanted in 
primary motor (MI) cortical area in monkeys performing a 
naturalistic 3D reach and grasp task. The task consisted of 
reaching a selected object and grasping it in a specific way 
after a go cue was presented. Here we focus on decoding 3-D 
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position at the wrist during reaches from estimated low-
dimensional neural trajectories, and compare it with decoding 
from full recorded population. The estimation of these low-
dimensional dynamics was based on non-discriminative 
(unsupervised) latent state-space methods, i.e. without 
knowledge of the related kinematics. An advantage of 
estimating low-dimensional dynamics with latent SSMs over 
more commonly used dimensionality reduction methods such 
as principal components analysis and factor analysis is that 
SSMs incorporate temporal structure (dynamics) in the latent 
state evolution. 

This paper is organized as follows. Section II describes 
the method to extract the low-dimensional dynamics from 
population activity using latent state-space models. Section 
III describes decoding using Kalman filters in which the 
observations are either the full population activity or the 
estimated low-dimensional dynamics. Section IV describes 
the behavioral setup for the free reach/grasp task and the 
preprocessing steps to obtain the neural activity. Comparison 
between decoding from full population and low-dimensional 
dynamic is presented in Section V, followed by conclusions 
in Section VI. 

II. LOW-DIMENSIONAL DYNAMICS 

Low-dimensional dynamics is a 𝑘-dimensional 
representation of the population activity of 𝑝 neurons, such 
that 𝑘 ≤ 𝑝. Latent state space models (SSMs) can be used to 
estimate these low dimensional dynamics, denoted as 
𝑥! ∈ ℝ!, at any time point 𝑡. Here we adopt Gaussian-
Markov state-space models, linear dynamic systems (LDS), 
where the states evolve accordingly to  

𝑥!!! = 𝜇! + 𝐴𝑥! + 𝜉!,       (1) 

where 𝜇! corresponds to the mean, 𝐴 ∈ ℝ!×! is the state 
transition matrix, and the {𝜉!}’s are independently and 
identically distributed (i.i.d.) Gaussian noise, 𝜉!~𝒩 0,𝑄 , 
with covariance matrix 𝑄 ∈ ℝ!×!. The population activity or 
observations, 𝑦! ∈ ℝ!, are linearly related to the states as  

𝑦! = 𝜇! + 𝐵𝑥! + 𝜀! ,       (2) 

where  𝜇! is the mean, 𝐵 ∈ ℝ!×! is the observation matrix, 
and 𝜀!~𝒩 0,𝑅  is i.i.d. Gaussian noise with covariance 
matrix 𝑅 ∈ ℝ!×!. The objective is to estimate the hidden 
states, 𝑥!, and the time-invariant model parameters, 𝐴, 𝐵, 𝑄, 
and 𝑅 given the observations. Here, we use a combination of 
subspace identification [3] and Expectation Minimization 
(EM) [4] methods to estimate the latent state-space model 
and states.  

EM learning is typically computationally intensive 
requiring a large number of iterations before convergence is 
achieved. To significantly reduce the number of required 
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iterations, we initialize the latent SSM parameters in the EM 
learning with the solution obtained from subspace 
identification. This substantially reduces the number of 
iterations. Although, we could in some cases go ahead in our 
decoding analysis with the solutions based only on the 
subspace identification approach, we found that EM typically 
results in improved decoding performance. 

III. DECODING FROM FULL POPULATION AND LOW-
DIMENSIONAL DYNAMICS 

To decode kinematics from the full population activity, 
we use an additional SSM, such that the observations are the 
population activity, 𝑦!, and the states are the kinematics, 𝑧!, 
expressed as 

𝑧!!! = 𝜇! + 𝐶𝑧! + 𝜁! 

𝑦! = 𝜇! + 𝐷𝑧! + 𝜂! ,       (3) 

where 𝜁!~𝒩 0, 𝑆  and 𝜂!~𝒩 0,𝑇  are i.i.d. noise with 
covariance matrices 𝑆 and 𝑇, respectively, 𝐶 and 𝐷 are the 
state and observation matrices, and 𝜇! is the mean of the 
kinematics. Given the full population activity and measured 
kinematics in a training dataset, the time-invariant model 
parameters, 𝐶, 𝐷, 𝑆, and 𝑇 are estimated by maximum 
likelihood estimation (MLE). Using Kalman filter recursions, 
the kinematics can be estimated (decoded) on test trials from 
the corresponding full population activity and the estimated 
SSM parameters. 

To decode kinematics from the low dimensional 
dynamics, another SSM is used such that the observations 
then correspond to the estimated low-dimensional dynamics 
as described in the previous section, 𝑥!. The SSM is 
expressed as  

𝑧!!! = 𝜇! + 𝐹𝑧! + 𝜍! 

𝑥! = 𝜇! + 𝐸𝑧! + 𝜚!,       (4) 

where 𝜚!~𝒩 0,𝑊  and 𝜍!~𝒩 0,𝑉  are i.i.d. noise with 
covariance matrices 𝑊 and 𝑉, respectively, and 𝐸 and 𝐹 are 
the observation and state matrices, respectively. SSM 
parameters are estimated via MLE as before and similar 
Kalman filter recursions are used to decode kinematics from 
the estimated low-dimensional dynamics and SSM 
parameters. 

IV. FREE REACH/GRASP TASK 

A. Neural Recordings and Signal Pre-processing 
Neural recordings were obtained from a microelectrode 

array implanted in the primary motor cortex (MI) of a 
monkey performing a 3-D reach and grasp task. Surgery and 
experimental details are described elsewhere [5, 6].  

Field potentials (0.3 Hz – 7.5 kHz, sampled at 30 kHz) 
were processed offline. A series of zero-phase filters (5th 
order Butterworth, 250 Hz high-pass) and IIR notch-filters 
(60, 120 and 180 Hz) were applied to obtain the high-pass 
activity signal. Neuronal spikes were extracted as events that 
pass the detection threshold, and then aligned with respect to 
the minimum peak. Extracted spikes for each channel were 
hand sorted into individual units/neurons, including both 
single unit and multiunit activities. Only neurons with an 
average firing rate > 1 spike/second were selected.  A total of 

55 single units were used in this study. Neuronal spiking 
activity was further converted into spike counts in 50-ms 
time bins. Finally, a square-root transformation was applied 
to the spike counts so that the single–neuron count 
distribution could be better approximated by a Gaussian 
function.  

B. Reach/Grasp Task 
In this task, the monkey sits on a chair, and the 

experimenter brings forward an object hanging from a string. 
Upon go cue, the monkey starts to reach for this object, while 
the object can still be swinging in space. This allowed us to 
explore a wide range of hand positions as the monkey tries to 
continuously reach for the object. Once the object was 
successfully grasped for ~1 second, a juice reward was given. 
A total of 86 successful trials using three different objects 
were recorded in the session examined in this report. 

Reflective markers on the arm and hand were used to 
track the kinematics via Vicon optical motion capture system. 
This allowed us to collect the 3D wrist position along the X- 
(horizontal right-left), Y- (horizontal forward-backward) and 
Z- (vertical upward-downward) axes, as demonstrated in 
Figure 1. It takes a variable amount of time for the subject to 
start movement after the go cue. As a result, we estimated the 
movement onset in each trial as the time the wrist Z-position 
has been elevated by 10 mm. All kinematics were sampled at 
~240 Hz. For decoding purposes, kinematics were down-
sampled to the same sampling rate as that for the population 
activity (20 Hz). 

 

Figure 1. 3-D wrist position along the X-, Y- and Z- axes for 86 
trials. Positions along each axis are z-scored, i.e. zero mean and one 
standard deviation. Each trial starts from the reference point at time 
zero. Decoded segments start at -300 ms. Movement onset 
corresponds to time zero and end at the time the object is grasped. 
Segments had a variable length ranging from 1 to 2.5 seconds.  
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V. RESULTS 

Decoding performances based on low-dimensional 
dynamics and based on population activity are compared as 
means to evaluate the relative amount of information 
available in the estimated low-dimensional dynamics. 
Comparable decoding performances indicate that the 
necessary information for representation/computation 
involving 3-D positions is preserved in these low-
dimensional dynamics.  

We estimated the low-dimensional dynamics from 
population activity using a SSM as described above and set 
the number of dimensions to 𝑘 = 12. This is less than 4 
times the size of the population with 𝑝 = 55 neurons. We 
initialized the model parameters with the solution from 
subspace identification, and repeated EM learning for 500 
iterations.  

 

 
(a) 

 
(b) 

Figure 2. (a) The log-likelihood function at different EM iterations. (b) 
Fluctuations in the correlation coefficient between true and decoded 3-D 
positions versus the number of EM iterations. 
 

Figure 2a shows the data log-likelihood with increasing 
EM iterations. We note that, although the log-likelihood 
increases monotonically as a function of EM iterations (as 
expected), there can be fluctuations in the correlation 
coefficient between the actual and decoded 3-D positions as 
the EM iterations progress. That can happen especially 
during the first 10-30 EM iterations, as seen in Figure 2b. In 
addition, the correlation coefficient can actually decrease 
slightly as it happened in the case of X-position.  

We then used the estimated 12-dimensional dynamics for 
decoding and compared it with decoding from the full 
population. Decoding analysis was performed under leave-
one-out trial cross-validation. Figure 3 shows a few examples 
of decoded 3-D positions based on the low-dimensional 
dynamics and full population. Table 1 compares decoding 
performances obtained from the full population and from the 
estimated low-dimensional dynamics. Decoding 
performances are assessed in terms of average correlation 
coefficients between the actual and decoded kinematics 
across all trials. Two main observations can be drawn. First, 
decoding along the Z-position is in general better than X-
position or Y-position in both decoding approaches. Second, 
decoding from low-dimensional dynamics with a small 
number of dimensions, i.e. 𝑘 = 12 in this case, is 
comparable, and sometimes slightly better than decoding 
from the full population 

In Figure 4, we report on the distribution of correlation 
coefficient over all 86 trials for X-, Y-, and Z- positions using 
boxplots. The central mark in each box is the median 
performance, and the edges are the 25th and 75th percentiles. 
Whiskers demonstrate the range of the lowest and highest 
performance, while outliers are performances that pass 
beyond a certain threshold from the edges of the box, and are 
illustrated with crosses. 

 

 
 
Figure 3. Examples for Kalman decoding of 3-D wrist position from full 
population activity and from low-dimensional dynamics. The actual 
kinematic trace is displayed in black for reference. All kinematics are z-
scored. 
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Table 1. Decoding performance as average correlation coefficient between 
actual and estimated kinematics 
 

 Population 
Decoding 

LDS 
Decoding 

X-position 0.51 0.54 
Y-position 0.84 0.84 
Z-position 0.90 0.91 

  
 
 
 

 
 
Figure 4. Comparison of 3-D wrist position decoding based on full 
population (Pop) and based on the low- dimensional dynamics 
(LDS). The center red line and edges of the box in each plot 
indicate the median, and the 25th and 75th percentiles, respectively. 
 

VI. CONCLUSION 
This paper explores a new approach for neural decoding 

based on low-dimensional neuronal dynamics, where these 
low-dimensional dynamics are estimated from full population 
activities via latent state-space models. Decoding 
performance was used to assess the amount of information in 
the low-dimensional dynamics compared to the information 
in the full population. Decoding of 3D hand positions during 
reach/grasp movements based on low-dimensional dynamics 
(dimension = 12) was comparable to the performance based 
on the full recorded population. Overall our findings indicate 
that information about task-related kinematics is preserved on 
the low-dimensional dynamics estimated from the recorded 
neuronal ensembles. We anticipate using this approach to 
develop more efficient decoders for brain-machine interfaces. 
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