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Abstract— The objective of this study is to assess numeri-
cally the effect of applying electrical current on the fibrous
tissue growth around polyethylene disk-shaped implants while
subcutaneously placed inside 60 day old male Han-Wistar rats.
This problem can be formulated as a design problem where
the goal is to determine the parameters of a partial differential
operator to achieve a desired effect. These electrical current
parameters are computed using a regularized iterative method.
The obtained results reveal that employing an appropriate elec-
trical current profile can reduce the fibrous tissue concentration
around the considered implant by up to 80%. This preliminary
study tends to demonstrate the effectiveness of this novel and
non-invasive approach to shield the implant from intolerable
levels of fibrous tissue growth, which consequently expands the
lifespan and functionality of implanted devices, as well as avoids
costly and traumatic surgical procedures.

I. INTRODUCTION

Implantation of biomaterials creates a foreign-body im-
mune response. This includes the formation of a fibrous
capsule to shield the body from the foreign object by creating
a fibrous wall of tissue of varying thickness that surrounds
or encapsulates the implant [1]-[2]. The formation of fibrous
tissue around any implant is normal, and is an integral part
of the wound-healing response to the implant. Problems
begin to surface when the fibrous capsule squeezes the
implant to the point where it hampers the performance of
the implant, ultimately leading to its failure. Thus, invasive
surgery to remove the fibrous formation or the implant is
inevitable. Electrical current based techniques have emerged
for addressing several challenging issues such as embryonic
stem cell proliferation, electro-dessication and curettage for
skin and liver cancer removal and treatment, burn wound
healing by pulsed electrical stimulation, and radio-frequency
ablation for inoperable liver cancer [3]-[4]. Hence, applying a
moderate, non-harmful electrical current based approach ap-
pears to be a very attractive non-invasive alternative approach
for disrupting the fibrous tissue growth around implanted
biomaterials.
Given that, we propose to investigate numerically the fea-
sibility and limitations of applying a moderate electrical
current to prevent or diminish the effect of the fibrous
tissue growth occurring around biomaterial implants. More
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specifically, our goal is to determine numerically the optimal
electrical parameters, such as magnitude of the current,
frequency, and duration of exposure, needed to disrupt the
fibrous capsule tissue growth around a given implanted
biomaterial. The determination of these parameters can be
accomplished by solving an inverse problems that falls into
the category of design problems consisting of estimating
parameters of a partial differential operator to achieve a
desired effect. The proposed study utilizes the mathematical
model suggested [5] to describe the fibrous tissue growth
around polyethylene disk-shaped implants subcutaneously
placed inside 60-day old male Han-Wistar rats. The exposure
of the subjects to the electricity is represented by a source
term added to the considered model [5]-[6].
This numerical investigation demonstrates the effectiveness
of using electricity for disrupting the fibrous tissue growth
around implanted biomaterials. Indeed, the obtained results
reveal that it is possible to design an admissible electrical
current profile that can reduce the fibrous tissue density by up
to 80%, or if desired, confine it to a prescribed tolerable level.
This preliminary study illustrates the great potential of this
novel non-invasive approach for benefitting the biomedical
community in several ways, chief among them extending the
lifespan and functionality of implanted biomaterial devices,
and avoiding the cost and trauma associated with repeated
surgical procedures for dealing with the undesired fibrous
tissue growth.

II. PROBLEM STATEMENT

The growth of fibrous tissue around homogeneous, disc-
shaped implants exposed to electrical current can be modeled
by the following initial boundary value problem (IBVP) [5]-
[6]:
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The concentration profile u(r, t) is a function of the per-
pendicular distance away from the surface of the implant
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r, and the time, t. The first equation indicates that the
capsule forming agents diffuse outward forming the capsule.
The diffusion rate is affected by the sensitivity of the
surrounding tissue to the implant and pressure it exerts. This
is represented by the exponential factor e−c2r

2

, which can
be viewed as a cell-motility function. The natural removal
of extraneous connective tissue is represented by the term
c3u(r, t). The summation term in the first equation represents
the electrical current present in the form of pulses. kn is the
intensity (in mA) of the nth pulse, N is the total number
of pulses, p is the period between the pulses, ω is the
pulse-width determining the exposure time (ω ≤ p), and
the total exposure time is Np. The proportionality constant
K is introduced to convert the voltage intensity to a non-
dimensional quantity. The value of K was determined using
in vivo data. Each individual square-shaped electrical current
pulse is represented by the characteristic function χ[0,ω].
Hereafter, we denote

−→
k = (k1, k2, ..., kN ). The Robin-type

boundary condition characterizes the interaction between the
implant and the capsule tissue. It indicates that the capsule-
forming agents are deposited at the surface of the disc at a
rate proportional to the difference between the concentration
of tissue and the maximum level of concentration c5. t∗ is
the starting time of the electrical current, whereas u0(r) is
the existing fibrous tissue concentration around the disc at
t∗. Note that if t∗ = 0, then u0(r) = 0. c1, c2, c3, c4, and c5
are positive constants whose values depend on the physical
and chemical properties of the implants as well as the
characteristics of the test subjects. These values determine
the nature of the capsule tissue growth: density, thickness,
as well as deposition rate. Hence, these parameters are the
biocompatibility index of the considered implant. In the
considered case of low density polyethylene discs (13mm
diameter and 2.5mm thickness) implanted subcutaneously
into 60 day old male Han-Wistar rats, the value of the
biocompatible index

−→
C as well as the proportionally constant

K has been determined using in vivo measurements [6].
These values are reported in Table I.
Before concluding this section, we must point out that that
IBVP is different from the initial boundary value problem
introduced in reference [5] by the summation term in the
right-hand side, and a non homogeneous initial condition. In
the absence of these two terms, IBVP describes the averaged
behavior of the concentration u(r, t) of the fibrous tissue
growth around an implanted disk.

TABLE I
BIOMATERIAL INDEX AND CONSTANT OF PROPORTIONALITY VALUES

c1 c2 c3 c4 c5 K

18.9 0.00009 0.000042 6.57 18.5 0.007

III. THE DESIGN PROBLEM

The goal is to find the optimal values of period,
pulsewidth, and intensity which will minimize the tissue

concentration around the considered disc-shaped implant. To
this end, we first observe that the solution to IBVP defines
an operator F that maps the electrical profile parameters−→
k = (k1, k2, ..., kN ), ω, and p to the concentration profile
u(r, t). The determination of these parameters, which reduce
the fibrous capsule tissue concentration u for a prescribed
duration of electricity exposure Np, can be formulated as
the following minimization problem:

Given an initial measured fibrous concentration u0(r),
find an admissible electrical current profile (

−→
k∗, ω∗, p∗)

such that:

(
−→
k∗, ω∗, p∗) = argmin‖F(

−→
k , ω, p)− ũ‖2 (1)

where ũ is a prescribed tolerable concentration level of the
fibrous tissue, and ‖ · ‖2 is the Euclidian norm. Observe that
if ũ ≡ 0, then the minimization problem (1) consists of
finding (

−→
k∗, ω∗, p∗) that will bring down the concentration

of the capsule tissue to its minimum possible level, whereas
if ‖ũ‖2 6= 0, then the obtained electrical current will prevent
the fibrous tissue growth from exceeding the prescribed
concentration level ũ.

IV. SOLUTION METHODOLOGY
As stated earlier, the minimization problem (1) is an in-

verse problem that falls into the category of design problems.
This problem is nonlinear and ill-posed in the sense of
Hadamard [7] which make it difficult to solve. In order to
overcome these difficulties, we use a regularized Newton-
type method. The iterative Newton method addresses the
nonlinear aspect of the problem, while the Tikhonov regu-
larization procedure addresses its ill-posed nature. Next, we
briefly highlight the salient features of the proposed solution
methodology.

We set −→p = (k1, k2, ..., kN , ω, p)
T , then solving the non-

linear problem (1) by the classical Newton method requires,
at each iteration l, that we solve the following linear system:

Jl
F δ
−→p l

= ũ− F(ρl) (2)

where JF is the Jacobian matrix corresponding to the oper-
ator F. Then, we update:

−→p l+1
= −→p l

+ δ−→p l
. (3)

Since the number of concentration measurements u is typ-
ically greater than the number of the sought-after electrical
current parameters −→p , the resulting linear system (2) is
overdetermined. Therefore, we solve it in the least-squares
approximation, as follows:

Jl
F

T
Jl
F δ
−→p l

= Jl
F

T
(ũ− F(−→p l

)) (4)

where Jl
F

T is the transpose of the Jacobian matrix of the
operator F at iteration l. Note that the linear system (4) is ill-
conditioned due to the ill-posed nature of the inverse problem
(1). For this reason, we employ a Tikhonov regularization
procedure to stabilize it. Consequently, the linear system (4)
is replaced by:

(Jl
F

T
Jl
F + µI)δ−→p l

= Jl
F

T
(ũ− F(−→p l

)) (5)
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where I is the identity matrix and µ is a positive number,
called the regularization parameter. Note that larger values
of µ improve the condition number of the linear system
(5), whereas smaller values of µ lead to a greater accuracy.
Therefore, the convergence as well as the accuracy of the reg-
ularized Newton algorithm depends strongly on the choice of
the value of µ. The “optimal” µ is found here through a trial
and error strategy consisting of sweeping the values of µ in
a geometric progression while measuring the corresponding
relative residual.
The critical step in the numerical implementation of the
proposed regularized Newton method is the computation, at
each iteration l, of the Jacobian matrix JF . Such computation
must be executed with a high level of accuracy to ensure the
stability, fast convergence, and computational efficiency of
the proposed algorithm. We have established in [6] that the
derivative of u with respect to parameter ρj (the jth coor-
dinate of −→p ) are the solutions of IBVP with different right-
hand sides. Consequently, at each iteration l, the computation
of the Jacobian matrix Jl

F requires solving the same initial
boundary value problem with N + 3 different right hand
sides, N being the total number of pulses (See Eq. (1)).
We employed a Crank-Nicolson type finite difference scheme
to solve the direct problems of type IBVP that incur at each
iteration. More specifically, we subdivided the interval [0, L]
uniformly in J subsets [rj , rj+1]; for j = 0, ..., J , where
rj = j∆x (measured in µm). Similarly, we considered for
the time variable t, the discrete set tm = m∆t; (∆t measured
in seconds/milliseconds). We then approximated the first-
and second-order derivatives in space in (IBVP) using the
following fourth-order approximations in space [8]:

∂u

∂r
(rj , t

m) ≈
umj−2 − 8umj−1 + 8umj+1 − umj+2

12∆r

∂2u

∂r2
(rj , t

m) ≈
−umj−2 + 16umj−1 − 30umj + 16umj+1 − umj+2

12∆r2
(6)

Moreover, the first-order derivative in time was approximated
using the following second-order scheme [8]:

1

2

[
∂u

∂t
(rj , t

m+1) +
∂u

∂t
(rj , t

m)

]
≈
um+1
j − umj

∆t
(7)

Observe that computing umj requires the knowledge of the
two neighboring points both to the left and right, as shown in
Fig. 1. Therefore, the construction of the boundary points um0
and um1 requires the computation of fictitious concentration
values. These are estimated using the following approxima-
tions:

u(r−2, t) ≈ um2 − 4∆rc4(um0 − c5)

u(r−1, t) ≈ − 3
2u

m
0 + 3um1 − 1

2 − 3∆rc4(um0 − c5)

(8)

Fig. 1. A schematic interpretation of spatial dependence for the considered
finite difference discretization.

Fig. 2. Time scale discretization. The periodic separation between electric
pulses (left), the time steps within each pulse (right)

For the opposite end of the spatial spectrum, j ≥ J , since
no tissue growth occurs, we set umJ = umJ+1 = 0.
The approximation of the electrical source terms deserves
a special attention. This is due to the fact that the period
between pulses p, is measured in seconds, whereas the
pulse-width ω is measured in milliseconds. Moreover, the
discontinuity of the characteristic function χ[0,w] calls for
a very small time step to transition in and out of the
current pulses in order to maintain the effect of the electrical
presence numerically. Together, these concerns prompted the
need for a multi-step scheme in time, as illustrated in Fig. 2.
We set ∆ts = 1 second. Then, we set ∆ttrans = 10−3∆ts
for transitioning in/out of pulses, and we set ∆tpulse =
ω10−3∆ts (resp. ∆tpulse = ∆ts(p − 10−3(ω + 2))) while
the electrical pulses were on (resp. off).

Application of the proposed finite difference scheme leads
to these linear systems:

Am+1um+1 = bm; m ≥ 0 (9)

where Am+1 is a (J × J) non-symmetric matrix
with five nonzero diagonals, um+1 is the vector
(um+1

0 , um+1
1 , ..., um+1

J−1 )T consisting of concentration
profile values at each point rj and at time tm+1, and bm

is a vector whose components are a linear combination
of the components of the vector um, the concentration
profile at the previous time step m. Since Am+1 is sparse
and relatively small (typically less than 1000 × 1000), we
employ the classical LU-factorization method for solving
the resulting linear systems (9).
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Fig. 3. Tissue growth concentration at various times. Fibrous capsule tissue
growth in the absence of electricity (left), and fibrous capsule tissue growth
exposed to a continuous electrical exposure (right).

V. NUMERICAL EXPERIMENTS

We analyze in this section the effect of the electrical
current by performing the following two sets of experiments.

Experiment #1: Effect of the electrical current when applied
at a prescribed time.

In this numerical experiment, a continuous electrical current
is applied at the implantation time, that is, at time t∗ = 0.
Hence, the initial concentration profile in IBVP is u0(r) =
0; ∀r ∈ [0, L]. The computed admissible optimal current
intensity in this case delivered by the Newton algorithm is
k∗ = 1.0mA. We report in Fig. 3 (left) the growth of the
concentration profile in the absence of any current after 5,
10, 15, and 100 days, as well as the growth when subject
to the electrical current delivered by the Newton algorithm
(see Fig. 3 (right)). The results indicate the following:

• In the absence of electrical current, the concentration
profile grew consistently until it attained a maximum
level (asymptotic regime) after 100 days.

• When applying the electrical current, the growth of
the capsule tissue also reached a maximum growth
level. However, the total cellular growth level was
approximately 80% less than the maximum growth in
the absence of electrical current. Clearly, the application
of a continuous electrical current significantly disrupted
the growth of the tissue around the considered implant.

Experiment #2: Electrical current applied periodically.

In the following experiment, we apply the electrical current
periodically to confine the growth of the fibrous tissue
concentration below a tolerable level. We assume here that
the maximum growth level that can be tolerated is 50% of the
maximum growth observed (see Fig. 3). Hence, beginning
at time t∗ (at which the concentration level reached 50%
of the maximum possible growth), we applied the electrical
current periodically for one day on and two consecutive days
off. The results depicted in Fig. 4, demonstrate that it is
possible to confine the tissue concentration at a prescribed
level (between 25% and 50% in this case) with a single day’s
dose of electrical current. This experiment suggests that, even
if it isn’t possible to completely disrupt or remove the fibrous
tissue, a periodic repellent dose controls and confines the
tissue growth to a reduced and tolerable level.

Fig. 4. Periodic application of continuous electrical current profile
beginning with admissible initial growth for 2.5 days (left), electricity
exposure for 1 day (center), and admissible growth for 2 days (right).

VI. CONCLUSIONS

We have investigated numerically the feasibility and limi-
tations of applying an electrical current-based procedure for
disrupting fibrous capsule tissue formation around bioma-
terial implants. This study reveals that applying a moder-
ate electrical current allows a significant reduction and/or
confinement at a tolerable level of the concentration of
the fibrous tissue surrounding the implant. This preliminary
study provides initial and practical guidelines for applying
the electrical current, rather than tedious trial and error to
determine suitable electrical repulsion of encapsulation. This
in turn has the potential to greatly reduce the duration and
costs of in vivo experiments that need to be performed
for verification and validation purposes. We are currently
conducting these experiments by implanting subcutaneously
disk-shaped implants in rats. This study is in compliance
with current approval of CSUNs IACUC committee.
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