
  

 

Abstract— The aim of this work was to analyze the 

possibility to apply a neuroelectrical cognitive metrics for the 

evaluation of the training level of subjects during the learning 

of a task employed by Air Traffic Controllers (ATCos). In 

particular, the Electroencephalogram (EEG), the 

Electrocardiogram (ECG) and the Electrooculogram (EOG) 

signals were gathered from a group of students during the 

execution of an Air Traffic Management (ATM) task, proposed 

at three different levels of difficulty. The neuroelectrical results 

were compared with the subjective perception of the task 

difficulty obtained by the NASA-TLX questionnaires. From 

these analyses, we suggest that the integration of information 

derived from the power spectral density (PSD) of the EEG 

signals, the heart rate (HR) and the eye-blink rate (EBR) return 

important quantitative information about the training level of 

the subjects. In particular, by focusing the analysis on the direct 

and inverse correlation of the frontal PSD theta (4 –7 (Hz)) and 

HR, and of the parietal PSD alpha (10-12 (Hz)) and EBR, 

respectively, with the degree of mental and emotive 

engagement, it is possible to obtain useful information about the 

training improvement across the training sessions. 

I. INTRODUCTION 

The rapid growth in worldwide air travel dramatically 

increased the demand for air traffic services. This demand 

increases loading on already burdened air traffic control 

systems and operators (Air Traffic Controllers; ATCos) that 

are at or near their designated maximum handling capacities 

[1]. Anecdotal evidence suggests that ATCos increasingly 

speak not of the difficulty of a given traffic density, but of 

the associated traffic complexity [2]. It is being recognized 

that complexity factors can interact in nonlinear ways and 

that individual differences between ATCos can mean that 

different controllers respond differently to the same 

constellation of complexity factors [3]. Factors such as skills, 

 
 

G. Borghini is with IRCCS Fondazione Santa Lucia, Rome, Italy 

(corresponding author to provide phone: +39 3493112548; e-mail: 

gianluca.borghini@gmail.com). 

P. Aricò, I. Graziani and F. Ferri are with the Dept. Physiology and 

Pharmacology, University “Sapienza” of Rome, Italy (e-mails: 

arico@dis.uniroma1.it, ilenia.graziani@gmail.com,  

ibfedericoferri@gmail.com). 

S. Pozzi and L. Napoletano are with Deep Blue Research and Consulting,  

Rome, Italy (e-mails: simone.pozzi@dblue.it, linda.napoletano@dblue.it).  

J. P. Imbert, G. Granger and R. Benhacene are with Ecole Nationale de 

 l’Aviation Civile, Toulouse, France (e-mails: jean- 

paul.imbert@recherche.enac.fr, geraud.granger@recherche.enac.fr,  

railane.benhacene@recherche.enac.fr). 

F. Babiloni, is with the Dept. Physiology and Pharmacology, University 

“Sapienza” of Rome, Italy and BrainSigns srl (e-mail: 

fabio.babiloni@uniroma1.it). 

training, experience, fatigue and other “stressors” all mediate 

the relationship between task demands, safety and 

performance of the AT-controllers. Hence, it is easy to 

understand how quantitative information about the skill level 

of the controllers could help to evaluate and to decide if the 

ATCos might need more training before working onto real 

scenarios. Several studies described the correlation of 

spectral power of the EEG bands with the complexity of the 

task that the subjects are performing [4]. In fact, an increase 

of electroencephalographic (EEG) power spectral density 

(PSD) especially over the frontal cortex in the theta band (4 - 

7 (Hz)) and a EEG PSD decrease in the alpha band (8-12 

(Hz)) over the parietal cortex have been observed when the 

required mental workload, the task’s complexity, the amount 

of information processing increase. Furthermore, it has been 

suggested that an increased Heart Rate (HR) could be related 

with an increased mental workload and engagement, while 

the Eyeblinks Rate (EBR) and duration are inversely 

correlated with the increase of the mental workload and 

attention [4]. The hypothesis at the base of this study is that 

the variations of EEG PSD in theta frequency band, over 

frontal areas, and in alpha band, over the parietal ones, 

together with the variation of the HR and EBR could be 

taken as indexes related to the training level of the subjects. 

To validate such hypothesis the EEG PSD gathered in a 

group of students during a daily training along a week must 

correlate with the levels of expertise of the task (behavioral 

data) and with the levels of the subject’s perceived workload, 

as assessed by the NASA-TLX questionnaire. 

II. MATERIAL AND METHODS 

A. Experimental group and ATM simulation task. 

A group of six healthy volunteers has been selected in 
terms of age (21±4 years) and previous computer game skills 
and experience. The subjects have been asked to learn to 
execute correctly an ATM task (LABY), that never did 
before, under easy (E), medium (M) and hard (H) conditions, 
randomly selected and proposed. A reference condition 
(NEUTRAL), in which the subjects watched the stimuli’s 
tasks without responding to them, has been defined for 
evaluate the variations of the neurophysiological parameters. 
The LABY microworld is a functional simulation of Air 
Traffic Control (ATC) that captures the underlying processes 
involved in electronic air traffic management (ATM) with a 
simplified version of the operational human-machine 
interface. Microworlds are computer-based human-in-the-
loop simulation environments that offer testing, 
behavioural/physiological measurement, and training 
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capabilities, with the flexibility to build various scenarios 
[5]. The LABY microworld is based upon the main task of 
guiding N plane(s) around a predetermined route, indicated 
by a green path (Fig. 1). Participants must input numerical 
values such as heading, flight level, speed, etc., in order to 
direct flight around the trajectory and to avoid any conflicts 
or obstacles which may occur during the flight-route. 
Penalties are applied if the aircrafts deviate off the route or if 
other constraints are not met. The difficulty of the task can 
be altered according to how many aircrafts the participant 
have to control, the number and type of clearances required 
over the time and the number/trajectory of other interfering 
flights. The subjects trained daily (almost for an hour a day) 
for 5 days (SESSIONS T1÷T5) and their neurophysiological 
signals have been recorded in the first (T1), in the third (T3) 
and in the fifth (T5) session, while the behavioral and 
performance data have been collected every day. At the end 
of each experimental condition the subjects filled the NASA-
TLX questionnaire for the evaluation of the perceived 
workload of the proposed task. 

B. Signal analysis 

Electroencephalogram (EEG) and physiological signals, 
including vertical electrooculogram (EOG) and 
electrocardiogram (ECG), have been recorded by the digital 
monitoring BEmicro system (EBNeuro system). The sixteen 
EEG channels, the ECG and the EOG channels have been 
collected simultaneously with a sampling frequency of 256 
(Hz). All the EEG electrodes have been referenced to both 
earlobes, and the impedances of the electrodes were kept 
below 10 (kΩ). 

 

Figure 1.  The LABY is a dynamic environment whereby an ATC must 

issue directional commands to guide N airplane(s) around a predetermined 

route, indicated by a green path, in order to avoid any conflicts or obstacles 

which may occur during the flight-route. 

The bipolar electrodes for the heart activity have been placed 
on the Erb’s point, while the bipolar electrodes for the EOG 
have been positioned vertically on the left eye. The acquired 
EEG signals have been digitally band-pass filtered by a 4

th
 

order Butterworth filter (low-pass filter cut-off frequency: 30 
(Hz), high-pass filter cut-off frequency: 1 (Hz)) and then 
segmented in epochs of 4 (sec), 2 (sec)-overlapped. The 
EOG signal has been used to remove eyes-blink artifacts 
from the EEG data by using the Gratton method [6]. For 
other source artifacts, a specific procedure for artifact 
removal, based on the approach involving the Riemman 
geometry theory has then been applied [7]. For each EEG-
epoch, the Power Spectral Density (PSD) was calculated 
using a periodogram with Hanning window (2 seconds 

length) in the EEG frequency bands defined, for each 
subject, by the estimation of the Individual Alpha Frequency 
(IAF) value [8]. The PSDs have then been analyzed by 
estimating the Coefficient of Determination (r

2
), or r-square 

[9], between the considered experimental condition and the 
reference condition. As 0 < r

2 
< 1 by definition, a signed r

2
 

has been derived by multiplying the coefficient of 
determination by the sign of the slope of the corresponding 
linear model of the regression analysis. In this way, it has 
been possible to obtain information not only about if the two 
datasets were different, but also about the direction of such 
difference. The HR and the EBR have been estimated by 
calculating the distance between consecutive peaks occurring 
in the ECG and in the EOG signals. In particular it have been 
used the R-peaks and the eyeblinks peaks and then they have 
been normalized by the z-score transformation with respect 
to the reference condition (NEUTRAL) [10]. 

C. Statistical analysis 

The results derived from the different analysis have been 

then validated by the statistical analysis performed by using 

the STATISTICA software (Statsoft). The one-way repeated 

measures ANOVA (Confidence Interval, CI = .95) was used 

for all the data with the factor SESSIONS. Such factor has 

three levels, one for each day of the week in which the EEG 

recording was made (T1, T3 and T5). Duncan post-hoc tests 

have also been performed. 

III. RESULTS 

A.  Performance analysis 

Throughout the training sessions, the performance of the 
subjects increased continuously in terms of mean 
performance level and accuracy. Figure 2 shows the 
performance’s index adopted across the different training 
days. By the inspection of Fig. 2 it is easy to note the 
simultaneous increase of the performances level and the 
decrease of the amplitude of the standard deviations in the 
learning curve. On the second day of training, all the subjects 
reached a good level of performance (almost the 90%) and 
since the third day, they could reach performance level 
higher than 95%. The one-way ANOVA performed on the 
global LABY score showed significant differences across the 
sessions (F(4, 180) = 34.74 with a p < 10

-5
). The post-hoc 

Duncan test showed that the first two sessions (T1 and T2) 
were statistically different from all the others (p < 10

-4
) while 

the last three ones (T3, T4 and T5) were not statistically 
different to each other. 

B.  Frontal PSD theta 

The ANOVA results reported in Figure 3 show a 
significant modulation of the of EEG PSD in theta band over 
the frontal areas (EEG channels: AF3, AF4, F3, Fz, and F4) 
across the different training sessions (F(2, 400) = 43.45), p < 
10

-5
 and also the Duncan’s post-hoc test confirmed these 

differences p < 10
-4

. 
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Figure 2.  The trend of the global LABY score across the five different 

training sessions (T1÷T5). The figure reports the mean performance value 

and the standard deviations for the sessions. A statistical significant 

increase of the performance was obtained at the end of the period when 

compared to the first day of training. 

It is evident that in the central session (T3), when the 
subjects have been supposed to have learnt how to execute 
correctly the task and focused the cognitive resources for 
improve their performances, the frontal PSD theta reached 
the highest increment respect all the other sessions. 

 

Figure 3.  Signed r-square of the frontal EEG  PSD in theta band over the 

frontal EEG channels AF3, AF4, F3, Fz and F4 across the training sessions 

T1, T3 and T5. At T3, the frontal PSD theta reached the highest increment 

(p < 10-5). 

C. Parietal PSD alpha 

Figure 4 shows the trend of the parietal EEG PSD in alpha 

band over the EEG channels P3, Pz and P4, represented as 

variation of signed r-square. Repeated measures ANOVA 

showed significant differences of the parietal PSD alpha 

(F(2, 240)=43.27 with an associated p value < 10
-5

) and a 

decreasing trend of the spectral PSD from T1 to T5 has been 

found out across the training sessions. 

 

 

Figure 4.  Signed r-square of the parietal EEG PSD in alpha frequency 

band during the training sessions (T1, T3 and T5). The continuous 

decrement is significant across all the training sessions (p<10-5). 

D. Heart and Eyeblinks rates 

Figure 5 and 6 show the results of the statistical analysis 

of the autonomic parameters of HR and of EBR. The HR 

shows that the subjects were emotively engaged in 

correspondence of the central training session (T3), as the 

HR in T3 was the highest one, and that at the end of the 

training period they were more confident with the 

experimental task, as both the HR and the EBR decreased 

and increased, respectively. 

 

 

Figure 5.  Heart Rate (z-score) values across the trianing sessions. The 

trend shows how in the central part of the training period (T3) the subjects 

showed an high emotive engagment, as the HR got the highest value. 

In fact, the Duncan’s post-hoc tests reported significant 

(p<.01) differences between the HR and EBR values of the 

first (T1) and last (T5) training session. In addition, the EBR 

z-score shows how the subjects kept to pay attention to the 

task, as it was negative even at the end of the training. 

 

 

Figure 6.  Eyesblink rate (z-score) values across the training sessions. The 

values are all negative because the subjects paid attention to the task for the 

whole training period and it shows how the subjects got more confident 

with task session after session. 

F. Perceived workload 

The one-way ANOVA for the NASA-TLX data shows 

significant differences among the training sessions (F(4, 

180)=19.39 and p< 10
-5

). A post-hoc test allowed to check 

out that the average scores of the NASA-TLX were 

statistically different until the fourth session (T4), whereas 

the T4 and T5 sessions were perceived as similar in terms of 

workload. 

 

3007



  

 

Figure 7.  Average NASA – TLX scores of the training sessions. After 

each training session the subjects perceived the difficulty of the 

experimental task easier than the previous one. 

IV. DISCUSSION 

The neurophysiological parameters, the task performance 
score and the experienced workload describe a story in 
which the training improvement of the subjects could be 
analyzed and quantitatively described. As it is possible to see 
from the results, after a couple of training sessions the 
subject started feeling more confident and learnt how to 
execute the task correctly, and in the central part of the 
training period (T3) the cognitive and emotive engagements 
became the highest. The frontal PSD theta and the HR 
reached the highest values, whereas the parietal PSD alpha 
and the EBR decreased significantly respect the first 
sessions. The continuous decrement of the parietal PSD 
alpha and of the EBR also showed how the subjects kept to 
pay attention to the execution of the task. From a perception 
point of view, the NASA-TLX scores demonstrated that 
session after session the subjects experienced less workload, 
especially at the end of the training period (T5), respect to 
the beginning of it (T1). 

V. CONCLUSION 

The integration of information derived by the EEG, ECG 

and EOG signals could be used as possible “cognitive 

metric” of the learning process and the training progress of 

learners throughout their periods of professional formation. 

After a fixed period of training it could be possible to 

compare subjects’ cognitive performances by estimating the 

neurophysiological parameters presented in this study, and 

by the High Resolution EEG should be also possible to 

investigate which are the cortical areas mainly involved 

during the execution of the task and in the different difficulty 

conditions [11]. 
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