
  

 

Abstract—The objective of this work is to develop an 

understanding of the relationship between mobility metrics 

obtained outside of the clinic or laboratory and the context of 

the external environment. Ten subjects walked with an inertial 

sensor on each shank and a wearable camera around their 

neck. They were taken on a thirty minute walk in which they 

mobilized over the following conditions; normal path, busy 

hallway, rough ground, blind folded and on a hill. Stride time, 

stride time variability, stance time and peak shank rotation 

rate during swing were calculated using previously published 

algorithms. Stride time was significantly different between 

several of the conditions. Technological advances mean that 

gait variables can now be captured as patients go about their 

daily lives. The results of this study show that the external 

environment has a significant impact on the quality of gait 

metrics. Thus, context of external walking environment is an 

important consideration when analyzing ambulatory gait 

metrics from the unsupervised home and community setting. 

 

I. INTRODUCTION 

Falling is a common occurrence in older adults and is a 

leading cause of serious injury, loss of independence, and 

nursing-home admission [1]. Prevention of falls results in 

prevention of injury and maintenance of independent living 

[2]. It is important to identify elderly persons who are 

particularly at risk of suffering a fall. Identification of high 

risk individuals allows fall prevention interventions to be 

directed appropriately. 

 

Research has shown that metrics from supervised mobility 

assessments can be used to identify elderly patients who may 

be at an increased risk of falling. It has been shown that 

stride time variability from a supervised walking trial can be 

used to predict risk of falling [3]. More recently it has been 

shown that wearable sensor metrics from a timed up and go 

(TUG) test can be used to predict risk of falling [4]. Such 

tests are very useful because they can identify individuals 

who are at an increased risk of falling. Such individuals 

should be directed towards interventions to reduce their risk 

of falling. 
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A limitation of the methods presented above [3, 4] is that 

these tests require clinical supervision to be performed. With 

advancing technology is it now possible to use wearable 

sensors to monitor mobility as people go about their daily 

lives, without the need for a visit to the hospital or clinic [5]. 

Utilization of mobility data from daily life to identify falls 

risk would mean that a much larger group of elderly 

individuals could have their falls risk monitored compared to 

using clinically supervised testing alone. An added benefit 

would be that real world mobility data would be used to 

assess falls risk, as opposed to mobility data from the 

controlled supervised clinical environment. 

 

Lesson’s learned regarding mobility metrics and their 

relationship to falls risk from the supervised environment 

cannot be directly applied to an unsupervised environment. 

It is not guaranteed that a person will move the same in daily 

life as they move in a supervised clinical setting. 

 

The main reason for the difference in the quality of 

mobility patterns between a supervised and an unsupervised 

environment is the context in which the movement occurs. 

In a supervised setting, such as a clinic or a laboratory, the 

external environment is controlled and participants are 

focused completely on performing a certain motor task. In 

an unsupervised setting, such as when somebody is walking 

to the grocery store, the external environment is variable and 

participants could be moving differently based on challenges 

in the external environment. These challenges might include 

things such as a busy walking path or a muddy walking path. 

However, obtaining knowledge of the external walking 

environment is difficult. It would not be reasonable to ask a 

patient to manually annotate each type of environment they 

walk in as they go about their daily life. 

 

Preliminary research on one patient has outlined how 

context of walking environment may be obtained using a 

wearable camera [6]. This research suggests that knowledge 

of external walking environment (the context) provides 

clinically important information when analysing 

unsupervised quality of gait information from daily life. The 

research question posed by such a scenario is to determine if 

context of walking environment combined with quality of 

gait metrics predicts falls risk better than having no 

knowledge of gait context. Proving this would mean that 

unsupervised gait monitoring in the community using 

wearable sensors could be used to assess falls risk and 

identify those individuals most in need of falls prevention 

training. This research question requires a large, elderly 

faller based testing group. However, before that is done 
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preliminary work is required to determine if external 

walking environment has an impact on quality of gait in 

control subjects.  

 

The purpose of the present study is to do this and develop 

an understanding of the relationship between the type of 

walking environment and quality of gait information from 

healthy subjects. 

 

II. METHODS 

In order to investigate gait metrics in different external 

walking environments a series of case studies were 

completed. Enlisted volunteers walked on a range of 

different terrain while wearing an inertial sensor (Shimmer 

3, Dublin, Ireland) on each shank and a wearable camera 

(Autographer, Oxford, UK) on a halyard around their neck. 

Figure 1 shows how the sensors were worn on the subjects. 

 

 

Figure 1.  Sensor set up on subjects. 

 

A total of ten subjects were recruited for the study (29.4 

years on average, +/- 4.7 years). Participants were included 

if they were not previously diagnosed with any gait or 

balance disorders. The aims and design of the study were 

explained to all prospective volunteers verbally and 

informed consent was obtained prior to data collection. 

Ethical approval was obtained from the University. 

 

The firmware on the inertial sensors was modified to 

allow for on board data storage. The accelerometer range on 

the accelerometers was set to +/- 6 G and they sampled at 

102.4 Hz. The gyroscope range was set to +/- 1000 deg/s in 

order to ensure that peak rotation rate values during the 

swing phase of gait were captured [8]. The inertial sensors 

were activated at the same time as the camera and recording 

of data commenced. The inertial sensors were placed just 

above the lateral malleolus of each ankle joint and were held 

using custom made semi-elastic Velcro straps. The wearable 

camera was placed around the neck of the participants with a 

halyard.  

 

Participants walked with an experimenter beside them 

who told them where to go and noted the times. Participants 

negotiated five different walking terrains: regular walking on 

a flat surface (normal), a busy hallway, a rough walking 

surface (gravel), and a hill and blindfolded on a flat surface. 

No breaks were taken between the different walking 

conditions. Subjects walked for at least thirty seconds on 

each terrain to ensure the wearable camera would get a 

photo. Subjects were instructed to walk at a self-selected 

normal walking pace. The time the participant commenced 

and completed each walking condition was noted and later 

used to identify each walking condition in the inertial sensor 

data.  Following completion of data collection, the inertial 

sensors and wearable camera were removed from 

participants and their data uploaded to a computer.  

 

A. Algorithm  

A method was used to detect initial contact (IC) and toe-off 

(TO) from the sagittal plane gyroscope signal that is based 

on the algorithm presented in Greene et al, [7]. However, 

since the Greene et al algorithm was developed for people 

walking in straight lines at different speeds in a controlled 

environment, it did not work for a small number of steps in 

which subjects had to make major adjustments to their gait 

to get around a group of people or get through a very tight 

area. A problem was occurring with the original algorithm 

due to the fact that IC points were missed because they were 

of lower magnitude than threshold five, as outlined in [7]. 

Another check was added to the algorithm, which only 

occurred if no minimum was found below the value of 

threshold five. In these instances, the closest minimum to 

mid-swing was used that was below 50 deg/sec. A similar 

check was used to find TO’s which were not identified using 

the steady state feature detection algorithm. Detection of IC 

and TO in the gyroscope signal allowed for the calculation 

of stride time, stance time as well as stride time variability. 

Stride time variability has been shown to be useful in the 

prediction of falls risk in the elderly [3]. Peak rotation rate of 

the shank during swing phase was also calculated, using a 

previously published method [8]. This variable was included 

because it has been suggested to be related to gait patterns 

which may lead to joint degeneration over time [8]. 

 

B. Data Analysis 

Evaluation of the quality of gait under different 

environmental contexts was achieved by means of analysis 

of average stride times in each context.  Stride time was 
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defined as the time between each IC on the same foot. A 

repeated measures ANOVA was used to look for stride time 

differences between the various external walking 

environments. Stride time was calculated for each stride for 

each participant in each context, averaged for each foot, and 

then averaged between feet for each participant.  Variance in 

each context was also calculated for each participant.   

III. RESULTS 

 

A one way repeated measures ANOVA was conducted to 

compare stride time across each of the walking conditions. 

Stance time was not included because of its high level of 

correlation to stride time (r = 0.915). Stride time variability 

and peak shank rotation rate were not included because it is 

appropriate to use ANOVA on one dependent variable only. 

The means and standard deviations are presented in Table 1. 

There was a significant effect for walking environment, 

Wilks’ Lambada=.173, F(4, 8)=7.160, p=.018, multivariate 

eta squared=.827.   

TABLE I.  AVERAGE AND STANDARD DEVIATION (IN BRACKETS) OF 

GAIT METRICS OVER THE FIVE DIFFERENT WALKING ENVIRONMENTS. 

Condition Stride time Stride time 

variability 

Stance 

time 

Peak shank 

rotation rate 

during swing 

Units Sec  sec deg / sec 

Normal 
1.05 

(.07) 

.001 

(.001) 

.58 

(.05) 

391.1 

(22.1) 

Hill 
1.16 

(.11) 

.012 

(.012) 

.68 

(.08) 

360.4 

(27.3) 

Rough 
1.07 
(.06) 

.002 
(.001) 

.61 
(.04) 

395.2 
(24.8) 

Blind 
1.11 

(.07) 

.002 

(.001) 

.64 

(.04) 

363.9 

(26.0) 

Busy 
1.16 

(.09) 

.010 

(.008) 

.67 

(.07) 

340.7 

(46.8) 

 

Figure 2 shows examples of photographs from the wearable 

camera in four of the different walking conditions. The 

blind-folded walking condition is not shown. 

 

 

 
Figure 2.  Examples of photographs from the wearable camera in four 

different walking conditions; A – normal walking, B – walking on a rough 

surface, C – walking in a busy area and D – walking up a hill. 

 

IV. DISCUSSION 

 

The results from this data collection suggest that the external 

environmental context in which a walking period occurs can 

have an effect on gait patterns. With advancing technology, 

it is now possible to measure gait patterns outside of the lab, 

as patients go about their daily life. This work indicates that 

taking into account the context of the external environment 

is important for such monitoring scenarios, as abnormal 

walking patterns may be due to changes in the walking 

environment, not internal changes to the patient.  

 

Previous work has shown that quality of gait metrics from 

three days of normal activity can identify elderly people at 

risk of falling as good as clinically based tests [9]. Being 

able to assess falls risk via wearable sensor use as patients 

go about their daily life would allow many more patients to 

be monitored, as opposed to patients only having their falls 

risk assessed upon a visit to a clinician. While this previous 

work [9] shows that falls risk can be obtained from gait data 

from the home and community, there is a possibility that the 

additional knowledge of the external environment  during 

certain gait events may allow for a more accurate falls risk 

prediction as well as giving clinicians powerful information 

to guide rehabilitation programs to reduce the chance of 

falling. 

 

Previous work has proposed that when obtaining 

unsupervised gait metrics as a person goes about their daily 

life it is important to take into consideration the context in 

which the walking is occurring [6]. This work suggested that 

the use of a wearable camera would allow for determination 

of the external environmental context in which a gait period 

occurs. We controlled the external environmental context in 

this study, however, from Figure 2, it can clearly be seen 

that the environment in which the gait pattern occurred can 

be classified from the wearable camera photographs. 

 

In this preliminary work we have only considered the 

context of the external walking environment. There are 

many other important contexts to consider when analyzing 

mobility data from the home and community setting; such as 

time of day, attentional focus, syncope and health issues 

such as blood pressure and heart rate. The ongoing research 

and development into this wide range of sensor technologies 

make it likely that insight into these factors could be 

obtained in the near future 

 

Knowledge of the environmental context in which a 

walking period occurs may prove a useful tool for clinician’s 

to assess in which types of environments certain patients 

have difficulty walking. This could be helpful in designing 

more effective rehabilitation programs as well as tracking 

the progress made during rehabilitation. 

 

Previous work in the area has utilized a lumbar mounted 

inertial sensor to obtain gait metrics. In this work, we used a 

2983



  

sensor mounted on each shank. Both mounting scenarios 

have advantages and disadvantages. A lumbar sensor is more 

uncomfortable in everyday life, as it can be felt when sitting 

down. However, two shank sensors mean more hardware is 

required. Due to the large amount of previous work using 

shank inertial sensors to monitor gait patterns as well as the 

fact that shank sensors are not in the way when sitting down 

we felt that this sensing location was most appropriate. 

 

In this preliminary work, periods of walking were 

annotated and manually found in the inertial sensor data. For 

clinical use, walking periods should be automatically 

detected. Previous work in the area has used either a signal 

magnitude area threshold based activity detection monitor 

[10] or used a method based on a threshold of the energy in 

the frequency domain. 

 

In this study, the external walking environment was 

controlled. The purpose of this work is to build towards a 

system that consists of inertial sensors and a wearable 

camera that can be used to monitor peoples gait patterns and 

the environment in which walking periods occur as they go 

about their daily life. The current state of the art wearable 

camera research to identify external environment is still at 

the stage of manually annotating image data [11]. Once 

manual annotation is completed on a large data set, such data 

could be used with machine learning techniques to develop 

classifiers which may automatically determine the 

environment that a person is walking in. 

 

The wearable camera information in this preliminary work 

was not used to quantify type of walking environment 

because the researchers brought participants out to walk on a 

set route that included specific environmental conditions. 

The use of a wearable camera could allow for quantification 

of external walking environment when obtaining 

unsupervised gait information as a patient goes about their 

daily life. 

 

Stride time variability has been shown to be related to 

falls risk in the elderly [3], however, this data was collected 

in a controlled laboratory environment. Now that sensor 

technology is allowing researchers to collect ambulatory gait 

information form the home and community setting, there is a 

need to understand how such knowledge relates to mobility 

information from an uncontrolled, unsupervised 

environment. The use of a wearable camera to obtain 

environmental context is one way to gain a deeper 

understanding of how mobility information from the home 

and community setting can be interpreted. 

 

Peak shank rotation rate during swing is a potentially 

useful variable in detecting abnormal gait patterns because it 

has been shown to be altered in abnormal gait when 

temporal variables are not altered [8]. For the healthy 

subjects in this study, peak shank rotation rate was lower in 

the busy, blind and hill walking conditions. Such a variable 

may prove useful in understanding gait information in the 

home and community setting. 

 

Research should consider if less invasive sensor 

technologies may be able to be used to provide contextual 

gait information. GPS data may be able to be used along 

with information such as, where a person lives and some of 

their daily habits. However, with the advancement of camera 

technology - wearable cameras are becoming smaller and 

more ubiquitous - there is a strong possibility that wearable 

cameras can be worn without anybody noticing. 

 

The results presented in this paper suggest that the 

external environmental context in which walking occurs 

affects a person’s gait pattern. This finding means that future 

work should consider if knowledge of the external 

environment of gait patterns in the home and community 

setting can better predict falls risk than without having any 

knowledge of the external environmental context. 
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