
  

 

Abstract— The benefits of exercise in rehabilitation after 

orthopaedic surgery or following a musculoskeletal injury has 

been widely established. Within a hospital or clinical 

environment, adherence levels to rehabilitation exercise 

programs are high due to the supervision of the patient during 

the rehabilitation process. However, adherence levels drop 

significantly when patients are asked to perform the program 

at home. This paper describes the use of simple inertial sensors 

for the purpose of developing a biofeedback system to monitor 

adherence to rehabilitation programs. The results show that a 

single sensor can accurately distinguish between seven 

commonly prescribed rehabilitation exercises with accuracies 

between 93% and 95%. Results also show that the use of 

multiple sensor units does not significantly improve results 

therefore suggesting that a single sensor unit can be used as an 

input to an exercise biofeedback system. 

I. INTRODUCTION 

Exercise therapy is recommended and widely used in the 

treatment of a number of musculoskeletal and orthopaedic 

conditions as it has been shown to improve a patient’s ability 

to return to full function [1]. Within the hospital or clinical 

environment, patients are closely supervised and consistently 

guided through their rehabilitation by their physical 

therapist/rehabilitation specialist. However, with the high 

number of people suffering from lower limb ailments (the 

OECD currently estimates that 10% of men and 18% of 

women aged over 60 years have symptomatic osteoarthritis 

[2]) and the increasing aging demographic there is a 

requirement for much of the therapy which is conducted 

within the hospital environment to now be performed 

externally.  

Home-based exercise therapy is becoming more frequent, 

as there is a demand for a more efficient delivery of 

healthcare. Unlike performing therapy within a clinical 

environment, there is a considerable increase in commitment 

required from the patient for the home exercise therapy to be 

successful due to the lack of support. Due to this additional 

commitment, many patients do not fully adhere to their 

prescribed program of exercise [3]. In addition to poor 

adherence to an exercise program, without the supervision of 

their therapist, many patients perform their exercises 

incorrectly – with poor biomechanical alignment and errors 

in the rate, rhythm and range of movement. Accurate 

assessments of exercise performance and adherence to 
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exercise programs are required to optimise the home 

exercise experience. There is therefore an urgent 

requirement for an exercise feedback system which could 

encourage the patient to continue with the program over 

time.  

Many different measurement tools have been previously 

employed in clinical practice to deliver biofeedback to 

patients as they exercise, e.g. force plates, 

electromyography, and optical motion capture systems; 

however these systems are restricted to a clinical or 

laboratory environment. The use of inertial sensor based 

biofeedback platforms could provide an alternative as they 

are low cost, easy to use and are ubiquitous. 

Previous work has evaluated the use of multiple inertial 

sensors to evaluate exercise quality [4-7]. However, all of 

the previous research employs multiple sensor units, 

therefore reducing their ability to be used in an in-home 

environment. Minimising the number of sensors used both 

reduces the cost and makes the platform more user friendly 

which is extremely important for older adults who may use 

this technology. Previous work has also attempted to 

classify between good and bad movements for particular 

exercises [5, 10], however this work is novel as it examines 

the use of machine learning techniques to classify between 

different performed exercises.  
The work carried out in this paper aims at providing a 

validation for a novel feedback system by answering two 

questions. Firstly, can inertial sensor units be used to 

accurately classify between seven different commonly 

implemented lower limb exercises and secondly, can a single 

sensor provide similar results to those provided by multiple 

sensor setups. Results are compared between the use of one, 

two and three sensors combined. 

 

II. METHODOLOGY 

This section outlines the methodology employed to 

collect, manage and analyse the data gathered in this study. 

This study is a cross-sectional analytical study. The protocol 

of this study was approved by the Human Research Ethics 

Committee in University College Dublin. 

A. Participants 

Probability sampling techniques were not possible in this 

study therefore a sample of convenience of suitable 

participants was selected for this study from a local 

physiotherapy clinic. Male or female patients who were 

attending the clinic, aged between forty and eighty years, 

and who had performed or were performing lower limb 

exercises for a musculoskeletal/orthopaedic condition or 
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injury were included in this study. The following exclusion 

criteria applied in this study; lower limb injuries that would 

limit ability to perform the study exercises, poor functional 

balance or mobility, any other medical condition that would 

limit ability to participate in exercise, and cognitive or 

language difficulties. Fifty-eight participants (19 male, 39 

female, age: 53.9±8.5 years, height: 1.69±0.08 m, weight: 

74.3±13.0 kg) took part in this investigation. Clinical 

information regarding the presenting condition or injury of 

the participants in the study is outlined in Table 1. 

 

Table 1- Clinical information regarding the presenting 

condition of the study participants 

Condition  N 

Osteoarthritis of the knee joint 14 

Osteoarthritis of the hip joint 9 

Osteoarthritis of the knee and hip joint 4 

Post meniscectomy 3 

Knee ligament injury 4 

Instability of knee joint 4 

Non-specific low back pain 18 

Unknown 2 

 

B. Exercises 

The experimental protocol consisted of seven different 
lower limb rehabilitation exercises commonly prescribed by 
physiotherapists following a knee or hip injury or surgery. 
These exercises were adapted from the Total Hip and Knee 
Replacement Exercise Guides of the American Academy of 
Orthopaedic Surgeons [8, 9]. The seven exercises studied 
were the heel slide (HS), the hip abduction (HA), the hip 
extension (HE), the hip flexion (HF), the inner range 
quadriceps (IRQ), the knee extension (KE) and the straight 
leg raise (SLR) exercises and are fully described by Giggins 
et al. in [10]. 

C.  Experimental Procedure 

Participants were required to attend a physiotherapy clinic 
for a once off measurement session. These measurements 
were performed by the same investigator for each participant. 
Participants were instructed to wear loose comfortable 
exercise attire during the measurement session to allow 
placement of the testing apparatus and to allow for free 
unrestricted movements during the exercises. Once informed 
consent had been obtained, demographic data including age, 
gender, body weight and height were gathered by self-report 
as well as a brief history of the presenting condition. The 
exercises were performed using the participants' affected 
limb. Where there was a bilateral lower limb 
injury/condition, as in cases with bilateral knee or hip 
osteoarthritis, the exercises were performed using the more 
affected side, provided the participant was comfortable to do 
so. A screening questionnaire was used to ensure that each 
participant was suitable for inclusion in this study and to 
perform the required exercises. 

Participants each performed ten repetitions of each of the 
seven studied lower limb exercises. Three of these exercises 
were performed in standing (HA, HE and HF), one exercise 
was performed in a seated position on a standardised chair 
(KE) and three exercises were performed while lying supine 
on a plinth (HS, SLR and IRQ). Participants were given 
standardised verbal instructions and a demonstration by the 
investigator on how to perform each exercise correctly. The 
order in which the exercises were performed was not 
randomised. If the individual requested it, participants were 
allowed a practice trial of each exercise before the test 
performance, allowing for greater clarity. However, no 
feedback on their performance was offered during the 
practice trial, except in cases where an extremely erroneous 
movement was observed. Likewise, during the test 
performance of each exercise no feedback was given to 
participants about their performance. 

Three inertial sensors units (Wireless 9DoF IMU Sensor, 
Shimmer, Dublin, Ireland) were secured to the leg that was 
being exercised for data collection; one on the thigh (T), one 
on the shin (S), and one on the foot (F) (Figure 1). The 
inertial sensors on the thigh and the shin were secured using a 
neoprene strap, which contained a pouch to house the sensor, 
while the foot sensor was secured using athletic tape. The 
orientation and positioning of each sensor was kept consistent 
across all measurement sessions. With a dimension of 5.3 cm 
x 3.2 cm x 1.5 cm and weight of 15 grams, these inertial 
sensors are unobtrusive, permitting unhindered subject 
movement. 

Each of the employed sensors contained both a tri-axial 
accelerometer and a tri-axial gyroscope sampling at 100 Hz.  
The Shimmer 9DOF Calibration Application v1.0 (Shimmer, 
Dublin, Ireland) was used to calibrate the accelerometer and 
gyroscope sensors of each sensor unit prior to the start of data 
collection each day. The Multi Shimmer Sync application for 
Windows (Shimmer, Dublin, Ireland) was used to capture 
synchronised inertial sensor data over Bluetooth from the 
three sensors during each of the exercises. The raw inertial 
sensor data captured were saved onto the PC, as well as on an 
external hard-drive. 

The investigator, who is a chartered physiotherapist, 
observed each participant as they performed each repetition 
of each exercise. The investigator evaluated performance 
during each exercise using a rating scale that was developed 
beforehand. 

 

 

Figure 1 – Sensor position on affected limb 
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D.  Data Analysis 

This section will first detail the required pre-processing 
steps performed on the acquired data, followed by details of 
the feature extraction and selection techniques performed 
prior to classification. As stated previously, each of the 
sensors were first calibrated [12] and synced prior to 
initiating recording. This ensured that all sensors outputs 
could be compared post recording. Following data recording 
and labeling by the onsite investigator, post analysis was 
performed using MATLAB (2012, The MathWorks, 
Natwick, USA). For each sensor, six distinct signals were 
available; namely acceleration X, Y and Z, and gyroscope X, 
Y and Z. To allow for cross subject analysis, the 
accelerometer X signal and the gyroscope Y and Z signals 
were first inverted, prior to further processing, if the subject 
performed the exercises using their left leg. Following this 
inversion, three additional signals were calculated; namely 
overall acceleration magnitude, pitch and roll. Pitch and roll 
were calculated using a Kalman filter [13]. This filter 
calculated the orientation using information from the 
gyroscope signals and used the accelerometer signals to 
correct for drift in the signal. The nine available signals were 
then filtered using a 4

th
 order low-pass Butterworth filter with 

a cut-off frequency of 20 Hz.  

To allow for the classification of the exercises, a number 
of features were first extracted from the nine available signals 
for each individual trial for all subjects. A number of both 
time and frequency domain features were extracted to 
represent the signals. These features were namely signal 
mean, standard deviation, skewness, kurtosis, signal energy, 
level crossing rate, signal range, 25

th
 percentile, 75

th
 

percentile and the variance of the wavelet coefficients using 
the Daubechies 5 mother wavelet to level 6. This resulted in 
14 features for each of the nine available signals producing a 
total of 126 features per sensor unit. 

Although each of these features could be useful to 
represent the data, it is not good practice to employ a large 
number of features when only a small number of trials are 
available as, by doing so, it is possible to over-fit the model, 
producing very good classification results during training but 
significantly poorer results during testing. In order to reduce 
the number of employed features principle component 
analysis (PCA) was performed [11]. PCA converts the set of 
features from a 126 dimensional matrix, with possibly 
correlated variables, into a set of principle components which 
are linearly uncorrelated. During analysis, the components 
which accounted for 99% of the variance were selected as the 
features. However, these new “features” no longer have any 
physical meaning (such as max, min etc.). It should also be 
noted that this process of feature selection using PCA is only 
performed on the training data, with the test data remaining 
unseen to the setup to again refrain from biasing the system. 
The test data is reduced using the coefficients found using the 
training data.  

Classification was performed using leave-one-subject-
out-cross-validation (LOSOCV) and the simple logistic 
regression classifier. One classifier was trained for each of 
the exercises using a one-vs-all approach, i.e. HS vs non-HS, 
HF vs non-HF etc., resulting in a bank of seven separate 
classifiers. For each fold of the cross validation, once the 

classifiers have been trained, they are presented with the data 
from the test subject. For each individual test trial, the 
classifier which outputs the highest probability is then chosen 
as the determined exercise for that trial. The use of LOSOCV 
ensures that there is no biasing of the classifiers, in such that 
the test subjects data is completely unseen by the classifier 
prior to testing. Previous research by Taylor et al. [5] has 
shown that not employing this method of testing can skew 
results by up to 21%.   

III. RESULTS 

One study participant only performed the three exercises 
in supine lying due to time constraints, three subjects were 
not able to perform the SLR exercise and data were lost for 
one participant during the HS exercise and for another during 
the KE exercise due to sensor failure. This resulted in a total 
of 570 trials for the HS exercise and the three exercises in 
standing, 550 trials for the SLR and IRQ exercises, and 560 
trials for the KE exercise. 

The results of the paper are presented in Table 2 and 3. Table  
presents the sensitivity and specificity scores for each of the 
individual sensors as well as all combinations of multiple 
sensors. F=Foot, S=Shin, T=Thigh, HS=heel slide, HA=hip abduction, 
HE=hip extension, HF=hip flexion, IRQ=inner range quadriceps, KE=knee 
extension, SLR= straight leg raise. 

Table  then presents the overall accuracy values obtained 
using each of the sensor combinations. Accuracy measures 
the overall effectiveness of a classifier and is computed by 
taking the ratio of correctly classified examples and the total 
number of examples available.  Sensitivity measures the 
effectiveness of a classifier at identifying a desired label, 
while specificity measures the classifiers ability to detect 
negative labels [5]. 

Table 2- Classification results: Sensitivity (Sens) and 

Specificity (Spec) scores across all exercises. Looking at 

all possible sensor combinations.  

 
  HS HA HE HF IRQ KE SLR 

All Sens 0.97 0.92 0.92 0.91 0.95 0.97 0.95 

 Spec 0.99 0.99 0.98 0.99 0.99 0.99 0.99 

F&S Sens 0.97 0.94 0.92 0.84 0.96 0.89 0.92 

 Spec 1.00 0.99 0.98 0.97 0.99 0.98 0.99 

S&T Sens 0.95 0.94 0.96 0.97 0.99 0.97 0.96 

 Spec 0.99 1.00 0.99 0.99 1.00 1.00 0.99 

F&T Sens 0.93 0.95 0.94 0.94 0.99 0.97 0.95 

 Spec 0.99 0.99 0.98 0.99 1.00 1.00 0.99 

F Sens 0.95 0.94 0.89 0.84 0.94 0.93 0.95 

 Spec 0.99 0.99 0.98 0.98 0.99 0.98 0.99 

S Sens 0.97 0.95 0.95 0.88 0.99 0.94 0.93 

 Spec 1.00 0.99 0.99 0.99 0.99 0.98 0.99 

T Sens 0.88 0.98 0.95 0.94 0.99 0.98 0.78 

 Spec 0.97 1.00 0.98 1.00 1.00 1.00 0.98 

F=Foot, S=Shin, T=Thigh, HS=heel slide, HA=hip abduction, HE=hip 
extension, HF=hip flexion, IRQ=inner range quadriceps, KE=knee extension, 
SLR= straight leg raise. 
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Table 3 - Accuracy (Acc) Results: Overall accuracy using 

the different sensor combinations 

 
 All F&S S&T F&T F S T 

Acc 0.94 0.92 0.96 0.95 0.95 0.95 0.93 

F=Foot, S=Shin, T=Thigh. 

IV. DISCUSSION 

It can be observed from the tables of results that the 

employed classification protocol is very efficient at 

separating the various investigated exercises when only a 

single sensor is employed, with the accuracy score only 

varying between 0.93 and 0.95. However, when the 

sensitivity results are also accounted for it can be seen that 

the various sensor positions provide higher classification 

results for different exercises. For example, when employing 

the foot sensor, it can be seen that the classifier has some 

trouble in separating the HF exercise and the KE exercise. 

This finding is as expected however due to the similar nature 

of the two exercises when examined from the perspective of 

the foot. However, the thigh sensor has no such problem 

with these two particular exercises as they have significantly 

different movement patterns when examined from the thigh. 

It does however have minor difficulties separating the HS 

and the SLR exercise due again to the similar morphologies 

of the signals. When employing the shank sensor, the 

exercises with the lowest classification accuracies are the HF 

and the SLR. Therefore, depending on the exercises to be 

classified, the optimal position of the sensors may change 

between the three examined positions. These results answer 

the question as to whether a single inertial sensor is able to 

accurately distinguish between seven commonly performed 

lower limb rehabilitation exercises. 

In order to determine if an increase in the number of 

sensors employed had a significant effect on the 

classification results, all combinations of sensors were also 

tested. It was found that, with the inclusion of the additional 

sensors, the minimum sensitivity observed across all 

exercises generally increased, but the overall average 

sensitivity score did not change dramatically. Similarly, the 

accuracy of the system did not change significantly. 

Therefore is can be stated that an increase in the number of 

employed sensors does not improve the classification results 

significantly enough to warrant the use of more than a single 

sensor. 

  

V. CONCLUSION 

With the changing demographics of the world’s 
population, the number of patients undergoing exercise 
rehabilitation continues to increase. As a consequence home-
based exercise therapy is becoming more frequent, with the 
demand for a more efficient delivery of healthcare. 

This paper endeavored to determine if simple inertial 
sensors could be employed to accurately distinguish between 
seven commonly implemented rehabilitation exercises and 
whether the addition of additional sensors would significantly 
improve results.  

Results have shown that the inertial sensors are capable of 
classifying between the analysed exercises with a high level 
of accuracy and they also support the hypothesis that the 
addition of extra sensor units does not significantly improve 
results. These findings therefore prompt the development of a 
simple biofeedback system using a single inertial sensor for 
use in rehabilitation to monitor adherence to exercise 
programs in the home. A single sensor approach is desirable 
as not only does it reduce the cost of the system but also 
avoids cumbersome set up and calibration procedures. Using 
a single sensor is also desirable as many mobile phones 
nowadays are equipped with inertial sensor technology, 
which means a mobile phone could be used as an input to a 
biofeedback system. Future work will examine the use of 
these inertial sensors for the classification of various 
commonly occurring deviations observed while performing 
the seven rehabilitation exercises as well as the development 
of a biofeedback system using the sensors in a smart phone.  
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