
  

  

Abstract—A method for automatically generating alerts to 

clinicians in response to changes in in-home gait parameters is 

investigated. Kinect-based gait measurement systems were 

installed in apartments in a senior living facility. The systems 

continuously monitored the walking speed, stride time, and 

stride length of apartment residents. A framework for 

modeling uncertainty in the residents’ gait parameter 

estimates, which is critical for robust change detection, is 

developed; along with an algorithm for detecting changes that 

may be clinically relevant. Three retrospective case studies, of 

individuals who had their gait monitored for periods ranging 

from 12 to 29 months, are presented to illustrate use of the alert 

method. Evidence suggests that clinicians could be alerted to 

health changes at an early stage, while they are still small and 

interventions may be most successful.  Additional potential uses 

are also discussed. 

I. INTRODUCTION 

 growing amount of research has demonstrated the 

importance of measuring an individual’s gait [1] and 

that the parameters which describe locomotion are 

indispensable in the diagnosis of frailty and fall risk [2]. 

Studies have found that certain gait parameters may be 

predictive of future falls and adverse events in older adults 

[3, 4], and that gait parameters may change prior to 

cognitive impairment [5, 6]. 

 Although research suggests assessment of gait is valuable 

for a variety of purposes, it is generally assessed 

infrequently, if at all, in a clinician’s office or performance 

lab, and only a small number of walks are typically 

observed. This infrequent assessment with a small number of 

observations, in combination with high levels of intra-

individual test-retest variability, leads to large minimum 

detectable change (MDC) values being reported for 

detecting changes in individuals, especially frail older adults 

[7]. Thus, despite studies indicating gait parameters are good 

population level indicators, they have shown less promise 

for detecting small changes in an individual. 

Every day, continuous measurement based on five to ten, 

or more, walks per day could allow detection of more subtle 

change in an individual’s gait that may be an early indicator 

of significant changes (such as mild cognitive impairment) 

in health status. Detecting health changes early would allow 
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for timely use of interventions when they may be most 

successful. Ideally, environmentally mounted sensors that do 

not require active participation of the individual, and do not 

require any devices to be worn, would be used given the 

preferences of older adults [8]. 

 In [9], the authors developed a method for measuring 

walking speed continuously in home environments using an 

array of passive infrared sensors. In subsequent studies [6, 

10], the authors found statistically significant associations 

between in-home walking speed and conventional measures 

of walking speed and gait-related motor function. They also 

showed that walking speed may be an early marker of the 

development of mild cognitive impairment. More recently, 

in [11], a method for measuring walking speed, stride time, 

and stride length continuously in home environments using 

the Microsoft Kinect [13] was developed. 

 This paper details initial investigation of a method for 

automatically generating alerts to clinicians in response to 

changes in in-home gait parameters measured using the 

method in [11]. Automatically identifying and alerting 

clinicians to potentially relevant changes in gait removes the 

need for them to continuously scrutinize the data. After 

receiving an alert, clinicians could analyze the data to 

determine if an intervention is warranted. 

Section II of this paper gives a brief overview of the 

Kinect-based in-home gait measurement system, followed 

by a description of both the framework used to model 

uncertainty in the in-home gait parameter estimates and the 

automated health alert algorithm. Section III presents three 

retrospective case studies illustrating use of the health alert 

algorithm. Finally, Section IV contains a brief discussion of 

the results, along with avenues for future investigation. 

II. METHODOLOGY 

A. Brief System Overview 

Fig. 1 shows the Kinect-based gait measurement system 

installed in one apartment included in the study. A Kinect is 

placed on a small shelf below the ceiling (height 2.75 

meters), and a computer is placed in a cabinet above the 

refrigerator. Walking segments occurring in view of the 

systems are automatically identified, segmented, and 

analyzed, and a probabilistic model representing each 

resident’s in-home gait is created and updated over time. 

Readers are referred to [11] for a more detailed description. 

B. Modeling Uncertainty in Gait Parameter Estimates 

The method in [11] for estimating in-home gait 

parameters does not attempt to quantify uncertainty in the 

estimates. However, the level of uncertainty has significant 
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implications for implementing a robust automat

alert algorithm. Uncertainty is introduced in both steps of the 

estimation process: (1) modeling a resident’s habitual gait

and (2) parameter estimate calculation. To quickly review, it 

is assumed that a resident will create a mode in the 4D 

(height, stride time, stride length, walking spe

their home. Step one fits a Gaussian distributi

of each resident; typically using one to thre

depending on how frequently walks from the resident are 

captured. Step two then computes parameter estimates for a 

resident over a desired time period, typically three 

two weeks, by selecting data points that are 

resident given their model, and then taking the mean of those 

selected points.  

For this analysis, it will be assumed the underlying 

assumption that a resident’s walk data follows

distribution in the feature space is correct. Bas

using a set of hand labeled walk data [12], th

seems reasonable. Thus, the uncertainty in the estimation 

process is dependent on two factors, the number of 

captured from the resident, and the level of data corruption; 

where data corruption refers to overlap between the 

Gaussian distribution of a resident and that 

individuals. Although the presence and degree of data 

corruption could be significant in certain situations

assumed for this analysis that no significant overlap exists.

Again, based on [12], this assumption also seems reasonable

for single resident homes, and multi-resident 

the residents differ considerably in height. 

As a resident’s walks are drawn from a Gaussian 

distribution, uncertainty in the mean can be quantified by the 

standard error of the sample mean (SEM): 
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Fig. 1 Top Left: Kinect and computer (inside cabinet) as installed. 

Top Right: Depth images and extracted foreground from an apartment. 

Bottom: Three-dimensional object formed using extracted foreground (all 

dimensions in inches). 
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where σ is the sample standard deviation, and 

sample size. Given SEM, 95 percent confidence limits of 

parameter estimate µ  can be computed as:

95%	������ � 	�	 �
Uncertainty in the final parameter estimates depend

both the SEM for step two, SEMp, and t

SEMm. The impact of SEMm depends on the threshold

used to select data.  If all data points with a Mahalanobis 

distance of 4 or less to a resident’s distribution

for inclusion in step two, less than 1 percent of the w

from the resident should be excluded, and the impact of 

SEMm should be negligible. However, if only data points 

with a Mahalanobis distance of 1 or less to a

model were selected, roughly one third of the walks from 

resident should be excluded. As a result, selection bias 

resulting from error in step one could

impact on the final parameter estimates. Consequently, 

uncertainty in the final estimates, SEM

���� � ���� � �	
where Ts is the threshold in Mahalan

select walks for inclusion in step two

 Monte Carlo simulation was used to approximate 

The simulation process consisted of: 

 

1) randomly generate a Gaussian distribution 

resident, θr = gr(x|µr,Σr) 

2) draw a random number of data points  from 

this set of points as χ  

3)  fit a model, ϕ, to χ as described in 

4)  pick a random sub-sample, ϓ, of 

5) select a subset, β, of ϓ based on ϕ

6) compute parameter estimates, µ

 

Following completion of these steps

along with SEMp and SEMm.  

 Using the results of 20,000 simulations, the value of 

was computed as that needed to make the distribution of 

�� � �� �	������ � �
����

have a standard deviation of 1. Results for varying values of 

Ts are shown in Fig. 2. On the interval [1,4], 

closely approximated as a best fit line:

�	��� � �0.153��
Thus, 95 percent confidence limits for in

parameter estimate µ  may be approximated as:

95%	������ � 	�	 �
� �	 � 1.96 $ %�&'�

� %(	0.641

where σx and Nx are the sample standard deviation and 

sample size for each step in the estimation process, and 

in the range [1,4].  
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randomly generate a Gaussian distribution modeling a 

draw a random number of data points  from θr, denote 

 as described in [11] 

ϓ, of χ  

ϓ based on ϕ and Ts = t 

parameter estimates, µe, as the mean of β 

Following completion of these steps, µe and µ r were stored, 

the results of 20,000 simulations, the value of f(t) 

was computed as that needed to make the distribution of si: 
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Fig. 2. Monte Carlo simulation results for approximating f(Ts). Each point 

was computed using the results of 20,000 simulations. 

 

C. Health Alert Algorithm 

The goal of the alert algorithm is to detect changes in a 

resident’s gait which may be indicative of changes in health 

status. The health alert algorithm effectively serves as a 

summarization mechanism; alerting clinicians to what may 

be significant data points while removing the need for the 

clinicians themselves to continuously scrutinize the data. 

First, a baseline, in the form of a range, B, is computed for 

each parameter as: 

, � -�̂/	1 � ∆1� � %/ , �̂/	1 � ∆3� �	%/4									7� 
where ∆l and ∆u determine the percentage change required to 

trigger an alert, �̂/	is the average value of the parameter 

estimate over the most recent four weeks, and %/ is the 

average value of 1.96SEMF for the parameter over the most 

recent four weeks. After computation, the baseline stays 

fixed until an alert is generated. 

The parameters ∆l and ∆u may be tuned by clinicians 

based on the level of change they deem significant. 

Ultimately, smaller values will lead to more alerts, while 

larger values will lead to fewer. For the case studies in 

Section III, values of 0.015 and 0.035 were selected for ∆l 

and ∆u, respectively, to achieve a suitable number of alerts. 

A current range, C, is computed every night as: 

6 � -�̂7 � %7 , �̂7 �	%74																												8� 
where �̂9 	is the average value of the parameter estimate over 

the most recent week, and %9 is the average value of 

1.96SEMF for the parameter over the most recent week. If C 

does not overlap B, an alert is generated.  

Following an alert, the baseline is recomputed using the 

most recent four weeks of data prior to the day of the alert. 

New alerts are then suppressed for one week, limiting alert 

frequency to a maximum of one per week. 

III. RESULTS 

Three retrospective case studies are included to illustrate 

the alert algorithm. The three individuals were monitored as 

part of an IRB approved study and informed consent was 

obtained from all. Each had a Kinect-based gait 

measurement system [11] installed in their home. Gait 

parameter estimates are shown for each individual in Fig. 3, 

and alerts that would have been generated are overlaid. 

A. Case Study 1 

This individual was monitored from October 3, 2011, 

until present, roughly 29 months. Over this period, 12 alerts 

would have been generated.  

On July 7, 2012, this individual started medication for 

back and shoulder pain. He was out of his home for knee 

surgery from Oct. 12, 2012, until Oct. 29, 2012. After 

returning, he continued physical therapy until Nov. 21, 2012.  

On Dec. 17, 2012, he reported intense back spasms, and 

restarted physical therapy until Jan. 8, 2013.  

Alerts 1 and 2, generated July 18, 2012, and Sep. 10, 

2012, respectively, were due to decreased stride length. 

These alerts likely indicate declining physical function after 

he started pain medication July 7, 2012.  

Alert 3, generated Nov. 21, 2013, was due to increased 

stride time, decreased stride length, and decreased gait speed 

following the individual’s return after knee surgery. The lag 

between the time the alert was generated and the individual’s 

return, 23 days, is a result of the Gaussian model needing to 

first adapt to the drastic change before a week’s worth of 

data matching the model could be acquired to compute 

current range, C. 

Alerts 4 through 8, generated over the time period Jan. 3, 

2013 through Feb. 15, 2013, were all due to decreasing 

stride time and increasing gait speed. These alerts indicate a 

quick, continuing improvement in physical function during, 

and for the month following, additional physical therapy 

from Dec. 17, 2012, through Jan. 8, 2012. Although 

improvement slowed, alerts 9 and 10, generated May 10, 

2013, and June 28, 2013, respectively, due to increasing gait 

speed, indicate continued improvement. 

Alerts 11 and 12, generated Aug. 26, 2013, and Sep. 2, 

2013, due to decreased gait speed, indicate a slight decline in 

physical function following this individual’s return from a 

vacation. Extended periods of time spent sitting in cars and 

on planes can lead to muscle weakness, and there is often a 

period of adjustment when transitioning back into one’s 

normal routine. This individual’s gait speed appears to have 

continued to decrease slightly over the most recent 6 

months; however, the change has not been sufficient to 

trigger another alert. 

B. Case Study 2 

This individual was monitored from October 8, 2011, 

through September 23, 2012, roughly 12 months. Over this 

period, 15 alerts would have been generated. 

On May 17, 2012, this individual was admitted to the 

hospital for an inpatient psychiatric examination to evaluate 

his mental status and adjust medication. He returned home 

May 31, 2012, after his mental condition was stable. Mental 

health interventions included an added antidepressant for 

mood stabilization and sleep regulation in addition to regular 

outpatient visits with a Geriatric Psychiatrist. 

Alerts 1 through 7, generated over the time period Dec. 

20, 2011, through Mar. 8, 2012, all due to decreased gait 

speed, predate the inpatient evaluation by 2 to 5 months.  

Alerts 8 through 15, generated over the time period Aug. 

3, 2012, through Sep. 22, 2012, all due to decreased stride 

length and/or gait speed, correspond to progression of 
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dementia, with the individual becoming increasingly agitated 

in the environment. This individual was discharged from the 

study when he moved to a facility specific to Alzheimer’s. 

C. Case Study 3 

This individual, who was diagnosed with Parkinson’s 

several years prior to enrollment in the study, was monitored 

from October 8, 2011, through September 23, 2012. Over 

this period, 8 alerts would have been generated. 

This individual was a relatively frequent faller, suffering 8 

recorded falls in the 18 months prior to the study. However, 

fall frequency increased near the end of March, 2012, as she 

suffered 15 recorded falls in the 6 months prior to being 

discharged from the study. She also had several medication 

adjustments during July, 2012, before a combination that 

worked well for her symptoms was found. 

Alerts 1 and 2, generated Jan. 8, 2012, and April 23, 2012, 

respectively, due to decreased gait speed, correspond to 

continued progression of Parkinson’s, with the first alert 

predating the increased fall frequency by 2 months. 

Alerts 3 through 8, generated over the time period June 

12, 2012, through Aug. 17, 2012, all due to either increased 

stride time, decreased stride length, and/or decreased gait 

speed, correspond to continued functional decline until 

successful medication adjustment likely resulted in a plateau 

during her final month in the study. 

IV. DISCUSSION 

An automated health alert algorithm was retrospectively 

applied to in-home gait data collected from three individuals. 

These case studies illustrate the potential of automated alerts 

based on in-home gait data for notifying caregivers of 

changes in an individual’s gait that may be indicative of 

changes in health status. This includes the onset or further 

progression of mental health issues. Such alerts could also 

help caregivers track changes in an individual following 

surgery, medication adjustment, or other interventions. 

Finally, the ability to accurately compare an individual’s gait 

before and after a major event, such as knee surgery, offers 

an improved method for evaluating the pace of recovery and 

final outcome. 

Future work includes further investigation and refinement 

of the automated health alert algorithm, along with real-time 

use of the alerts in an upcoming study. This prospective 

study will investigate many issues not addressable with a 

retrospective analysis. 
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Fig.3. Graphs (with 95% intervals) of in-home gait parameters. Gaps 

indicate periods when individual was out of home, or did not walk 

frequently enough to be modeled. Vertical lines indicate alerts that would 

have been generated. Refer to Section III for specific discussion of the 

alerts.  Top: Case study 1. Middle: Case study 2.  Bottom: Case study 3. 
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