
  

  

Abstract— The peripheral vascular resistance (RPV) control is 
known to be largely sympathetically-mediated; thus assessment 
of the RPV control would allow us to infer valuable information 
regarding sympathetic nervous activity. The linear and 2nd-
order nonlinear minimal models were used to capture the 
influences of blood pressure (baroreflex) and respiration 
(respiratory-coupling) on fluctuations of RPV. To validate the 
minimal models, they were applied on the “data” generated by 
the simulation model developed in our previous study. This 
study demonstrated that the linear minimal model was able to 
recover the “true” (simulated) kernels. The nonlinear model 
was able to detect the increase in nonlinearity in the system. 
The system gains derived from the estimated kernels showed 
strong relationship with the simulation gains, suggesting that 
the system gains could be employed as potential biomarkers of 
autonomic function. These results also showed that the 
nonlinear model had sufficient sensitivity to detect the 
difference in autonomic reactivity between subjects with mild 
and severe metabolic syndrome and obstructive sleep apnea 
syndrome exposed to orthostatic stress. 

I. INTRODUCTION 

Assessment of sympathetic nervous activity (SNA) has 
been an important focus of medical research, as knowledge 
of sympathetic activity provides information not only about 
the underlying autonomic physiology, but also about the 
clinical state of the subject being tested. Various techniques 
have been developed for the assessment of SNA but these 
techniques can be invasive, costly, and/or technically 
demanding. Since the peripheral vascular resistance (RPV) is 
known to be sympathetically mediated [1] and the changes in 
RPV are reflected as vasoconstriction/vasodilation response, 
SNA information can be inferred from these responses. 
Vasoconstriction response can be measured noninvasively by 
devices such as peripheral arterial tonometry (PAT) and 
Laser Doppler flowmeter. Thus, we could potentially employ 
the detection of vasoconstriction response as an indicator of 
changes in SNA. 

The regulation of RPV is generally attributed to the 
baroreflex control of total peripheral resistance (TPR). 
However, evidence shows strong respiratory modulation on 
muscle sympathetic nerve activity measured from peroneal 
nerve [2, 3]. Also, a deep breath or a sigh is reported to be 
rather consistently followed by peripheral vasoconstriction 
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[4, 5], which further suggests a modulatory influence of 
respiration on RPV. To confirm this observation, our previous 
study employed a minimal modeling approach to investigate 
whether the respiratory modulation on RPV was a result of the 
modulatory effect of respiration on blood pressure, whose 
effect got carried over to be reflected in RPV, or it was a 
result of direct modulation of respiration [6]. We found that 
respiration likely affects RPV through direct modulation [6]. 
Further, the closed-loop simulation model of blood pressure 
variability developed in the previous study was able to 
demonstrate that without incorporating the respiratory 
modulation effect on TPR, the sigh-vasoconstriction 
response cannot be reproduced [6]. 

In this study, we validated the minimal model its ability 
to capture the variability in RPV. This was achieved by 
applying the minimal model on “data” generated by the 
simulation developed in the previous study to see whether 
the simulated (“true”) impulse responses could be recovered. 
We also extended the minimal model proposed in the 
previous study to incorporate the 2nd-order nonlinear 
components as well as the blood pressure-respiration 
interaction. Lastly, we applied the minimal models of RPV 
variability on experimental data obtained from obese 
children with varying degrees of metabolic syndrome (MetS) 
and obstructive sleep apnea syndrome (OSAS). 

II. METHODS 

B. Minimal Models 
Two minimal models were employed in this study: linear 

and 2nd-order nonlinear models. Both minimal models were 
assumed to be time-invariant models. The linear model 
consisted of two main autonomic-mediated mechanisms. The 
first one was the baroreflex control of peripheral vascular 
conductance (BPC), which related fluctuations in mean 
arterial pressure (MAP) to fluctuations in peripheral vascular 
conductance (GPV = 1/RPV). The second mechanism was the 
respiratory-peripheral vascular conductance coupling (RPC), 
which related fluctuations in respiration (ILV) to fluctuations 
in GPV. The linear model can be represented as 
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where hBPC and hRPC represent the impulse responses of BPC 
and RPC, respectively; TBPC and TRPC represent the latencies 
of BPC and RPC; M represents the memory of the system; 

Estimating the Baroreflex and Respiratory Modulation of 
Peripheral Vascular Resistance  

Patjanaporn Chalacheva-IEEE Student Member and Michael C.K. Khoo, IEEE Fellow 

2936U.S. Government work not protected by U.S. copyright



  

and εGPV represents the extraneous influence that cannot be 
explained by the model. 

The 2nd-order nonlinear model included the quadratic 
nonlinear component of the BPC and RPC mechanisms as 
well as the interaction effect of the two inputs in addition to 
the linear components. The mathematical representation of 
the model is as follows: 
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where hBPC and hRPC represent the linear BPC and RPC; h2BPC 
and h2RPC represent the 2nd-order effect of blood pressure 
and respiration in GPV, respectively; and hBPC,RPC represents 
the interaction of blood pressure and respiration on GPV. 

The model components (kernels) were estimated using 
the basis function expansion technique [7]. In brief, each 
kernel could be represented as a weighted sum of basis 
functions. In this case, Meixner basis functions (MBF) were 
chosen. Using this technique, each linear kernel can be 
represented as 
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Each 2nd-order nonlinear kernel can be represented as 
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Lastly, the interaction kernel can be represented as 
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j are the orthonormal sets of MBF with 
nth order of generalization. The larger the value of n, the 
longer it takes for the MBF to reach its maximum value. cx 
correspond to the expansion coefficients of the basis 
functions for the linear kernel. cxx and cxu correspond to the 
expansion coefficients of the basis functions for the 
nonlinear kernel and interaction, respectively. qx and qu 
represent the Meixner function orders, the total numbers of 
MBF, used in the expansion of the kernels. The weights or 
the expansion coefficients of the basis functions were 
estimated using least-squares minimization. This expansion 
technique greatly reduces the number of parameters needed 
to be estimated and thus estimation accuracy could be 
achieved even when applied to relatively short data 

recordings with the presence of noise. The least-squares 
minimization was repeated for different combinations of 
delays, number of MBF, and order of generalization. For 
each combination, the minimum description length (MDL) 
[8] was computed. MDL measures the relative quality of data 
fitting by balancing the goodness of fit and the complexity of 
the model. The set of parameters with the global minimum 
MDL is selected as the optimal set. Once all the parameters 
were determined, the kernels could be obtained using (3)-(5). 

B. Simulated Data 
To test the performance of the minimal models, we 

investigated three aspects of the estimation. The first aspect 
was to evaluate the accuracy of the estimated kernels of the 
linear model. The estimation algorithm was applied on the 
“data” generated by the simulation model. Details on the 
generation of simulated data are discussed in [6]. The 
estimated kernels were then compared with the “true” 
(simulated) kernels in the simulation model. To test how the 
level of noise affected the accuracy of the estimation, the 
estimation algorithm was applied on simulated data with 
different levels of system noise and measurement noise. 

The second aspect was to investigate how nonlinearity in 
the simulation model affected the estimated kernels of the 
2nd-order nonlinear model. To induce more nonlinearity to 
the simulated data, the linear operating range of the TPR 
baroreflex in the simulation model was lowered. The 
estimation algorithm of the nonlinear model was then applied 
on the simulated data from the original simulation model as 
well as the simulated data with the modified baroreflex 
control of TPR. The estimated kernels, the nonlinear kernels 
in particular, obtained from the original simulation model 
were then compared with the estimated kernels from the 
simulation model with the modified TPR baroreflex control. 

Lastly, we determined the relationship between the gains 
in the simulation model and the system gains derived from 
the estimated linear kernels. The system gains were obtained 
by taking the Fourier transform of the kernels. The average 
of the magnitude part of the Fourier transform were taken in 
the low-frequency (0.04-0.15 Hz) and high-frequency (0.15-
0.4 Hz) ranges. These derived system gains were then 
compared with the respective gains in the simulation model. 

C. Experimental Data 
Data from ten obese male pediatric subjects who 

underwent autonomic function tests, metabolic tests and 
sleep studies were used in this study. The experimental 
procedures included 1) noninvasive measurements of 
respiratory airflow, ECG, continuous blood pressure and 
PAT during supine and standing postures (10-min recording 
per posture); 2) morning fasting blood samples, followed by 
a frequently sampled intravenous glucose tolerance test; and 
3) polysomnography. To investigate the effect of MetS + 
OSAS on autonomic reactivity due to orthostatic stress, the 
subjects were divided into 2 groups by their obstructive 
apnea hypopnea index (OAHI) and insulin sensitivity (SI). 
The subjects with lower OAHI and higher SI were treated as 
controls while the rest were treated MetS + OSAS subjects. 
The minimal models were applied on the experimental data 
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and the system gains were derived from the estimated 
kernels. The reactivity was defined as the percentage change 
in BPC and RPC gains in both low- and high-frequency 
ranges from supine to standing. t-test (or Mann-Whitney rank 
sum test) was employed to test the difference in reactivity 
between the two subject groups. 

III. RESULTS 

A.  Simulated Data – Effect of Noise 
The estimation of the impulse responses was robust to the 

effect of measurement noise. With low level of system noise 
in the simulation model, the estimation was not accurate. The 
linear minimal model was able to recover the hRPC well. The 
estimated hBPC showed the initial negative response but the 
second peak of the estimated hBPC closely resembled “true” 
hBPC in terms of shape as well as time delay (Fig 1). 

 
Figure 1. “True” (black) and estimated hBPC (red) from simulated data with 

different levels of measurement and system noise. 

B.  Simulated Data – Increased Nonlinearity 
Fig. 2 shows the estimated h2BPC kernels from simulated 

data from the original simulation model and the simulation 
model with increased nonlinearity in the TPR baroreflex. 
The dynamics of the h2BPC estimated from the simulation 
with increased nonlinearity was much larger compared to the 
h2BPC estimated from the original simulation model. 

 
Figure 2. Estimated h2BPC from the original simulation model (left) and the 
simulation model with increased nonlinearity in the TPR baroreflex (right) 

C. Simulated Data – Simulated Gains vs. System Gains 
Fig. 3 shows how the system gains derived from the 

estimated kernels changed with different levels of the 
simulated gains. Both low- and high-frequency BPC gains 
were linearly correlated with the simulated TPR baroreflex 
gain (Kb,TPR). As the Kb,TPR increased, BPC gains in both 
frequency ranges also increased. The low-frequency BPC 
gain was more sensitive to the change the Kb,TPR as reflected 
by steeper slope compared to the high-frequency BPC gain. 
Similar to the BPC gains, the RPC gains in both frequency 
ranges increased with increasing simulated gain of the sigh-
vasoconstriction reflex (KRPC). The low-frequency RPC gain 
showed linear correlation with KRPC. However, the high-
frequency RPC gains showed saturation effect as the 
simulated gain became lower. 
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Figure 3. Simulated gains vs. system gains derived from the estimated 

linear kernels at low- and high-frequency ranges. 

D.  Experimental Data 

TABLE I.  SUBJECT CHARACTERISTICS 

 Control  
(N = 5) 

MetS + OSAS 
(N = 5) P-Value 

Age (years) 13.0 ± 3.0 13.9 ± 2.5 0.625 

BMI (kg/m2) 33.06 ± 4.64 38.28 ± 10.0 0.322 

OAHI (events/hr) 1.94 ± 0.24 5.86 ± 2.66 0.008† 

SI (×10-4 min-1/µU/ml) 6.60 ± 8.80 1.70 ± 0.68 0.222† 
† Mann-Whitney rank sum test; otherwise, t-test 
Data show mean ± standard deviation. 

The subject characteristics are displayed in Table I. 
Overall, the system gains derived from both linear and 
nonlinear models decreased from supine to standing. For the 
gains derived from the linear model, the changes in the gains 
(measuring autonomic reactivity) of the control and MetS + 
OSAS groups were not significantly different. However, 
there was a significant difference in the change in high-
frequency linear BPC gains derived from the nonlinear 
model. MetS + OSAS subjects show significantly larger 
reduction in the gains from supine to standing compared to 
the control subjects (p = 0.016). Similarly, there was a 
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greater reduction in the low-frequency 2nd-order nonlinear 
BPC gains from supine to stand in MetS + OSAS subjects 
compared to the control subjects. (p = 0.039). Fig. 4 shows 
the BPC gains derived from the nonlinear model from supine 
to standing in both subject groups. 
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Figure 4. Nonlinear-model BPC gains from supine to standing across 

subject groups. (Error bars show median and interquartile range.) MetS + 
OSAS showed significant BPC gain reduction compared to controls. 

IV. DISCUSSION 

To validate the accuracy of the kernel estimation, we 
applied the minimal model estimation to the simulated “data” 
produced by the simulation model developed in the previous 
study [6]. The estimated kernels were then compared with 
the kernels derived from the associated components of the 
simulation model. We found that higher system noise 
improved the estimation and the estimation was robust to the 
effect of measurement noise. The minimal model was able to 
recover the hRPC accurately. The estimated hBPC show the 
initial negative response. However, there was a positive peak 
at 5 seconds with the shape and dynamics that are 
comparable to the simulated impulse response. The negative 
peak in the estimated hBPC could be attributed to the strong 
feedforward effect (vasoconstriction  increase in MAP).  

Next, to validate whether the 2nd-order nonlinear 
minimal model was able to capture the nonlinear behavior in 
the system, the nonlinearity in the TPR baroreflex was 
increased by narrowing the linear operating range. We 
demonstrated the increased in nonlinearity could be reflected 
in the 2nd-order nonlinear BPC component, which showed 
much larger amplitudes compared to the nonlinear kernel 
estimated from the original simulation model. 

To test whether there was a relationship between the 
system gains derived from the estimated kernels and the 
actual gains in the system, we adjusted the TPR baroreflex 
gains and RPC gains in the simulation model then compare 
these simulation gains with the system gains derived from the 
estimated kernels. We demonstrated that the system gains 
derived from the estimated kernels reflected the 
corresponding changes in the simulation gain. Further, even 
if the estimation of the hBPC was not perfectly accurate, the 

derived BPC gains still showed good relationship with the 
simulation gains. This finding suggests that we could use the 
derived system gains as the compact descriptors of the 
autonomic function. 

The linear and nonlinear minimal models were applied 
on experimental data collected from obese male pediatric 
subjects with mild (control) versus more severe degrees of 
MetS + OSAS. The system gains derived from the linear 
model could not differentiate the autonomic reactivity 
between the two subject groups. On the other hand, the 
system gains derived from the nonlinear model were able to 
differentiate the autonomic reactivity due to orthostatic stress 
between the control and MetS + OSAS subjects. 

V. CONCLUSION 
The linear minimal model of GPV variability was able to 

recover the “true” impulse responses reasonably well. The 
nonlinear minimal model of GPV was able to detect the 
increased nonlinearity in the system. The system gains 
derived from the estimated kernels could potentially serve as 
the compact descriptors of the autonomic function. The 
preliminary results show that the nonlinear minimal model 
was able to detect the difference in autonomic reactivity 
between control and MetS + OSAS subjects. 
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