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Abstract— We propose a new Kernel-based Atlas Image
Selection computed in the Embedding Representation space
(termed KAISER) aiming to support labeling of brain tissue
on 3D magnetic resonance (MR) images. KAISER approach
provides efficient feature extraction from MR volumes based
on an introduced inter-slice kernel (ISK). Thus, using the ISK
matrix eigendecomposition, the inherent structure of data dis-
tribution is accentuated through estimation of low dimensional
compact space where every pair-wise image similarity can be
better measured. We compare our proposal against the whole-
population atlas, randomly and demographically selected multi-
atlas approaches in a four-tissue image labeling task. Obtained
results show that the KAISER approach outperforms other
alternative techniques (98% Dice index similarity against 94%),
while exhibiting better repeatability.

I. INTRODUCTION

Magnetic Resonance (MR) images are used in many

medical applications, by instance, to model evolution of

pathologies (like Alzheimer, dementia or schizophrenia)

by estimating anatomical or functional structure changes

through time or space. Also, MR information benefits struc-

tural model estimation of head conductivity patterns required

for electromagnetic source reconstruction algorithms [1].

Nonetheless, either application requires an accurate brain

structure segmentation that is a somewhat complicated task,

mainly, due to the low inter-structure contrast and image

artifacts [2]. Hence, spatial functions (termed as atlas or

templates) have been proposed for modeling head structure

distribution. To this end, templates are provided as sets

of shape, intensity and/or functional models [3]. However,

performance of the atlas-based segmentation highly depends

on the carried out template-to-image registration [4].

Although unimodal shape distributions may be assumed,

accomplished solutions are mostly biased since atlases are

computed from anatomically unrepresentative images [1].

In contrast, the multi-atlas segmentation schemes are more

efficient when more representative atlases can be estimated

from large datasets. Besides, as discussed in [4], atlas

construction can take into account particular aspects of image

similarity like demographic affinity among subjects as in [1].

Nevertheless, most of the demographic-based approaches as-

sume that image distributions depend only on few considered

grouping categories (e.g. age and gender), but at the same

time they neglect the influence of others (e.g. disease or
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handedness). Moreover, to take into account all possible

demographic groups is a not tractable task.

On the other hand, atlas construction is usually based on

information measures that are time-consuming, especially, in

cases of many images. Distance pre-computation approaches

attempt to cope with this issue. Thus, in [5], three manifold

learning techniques are discussed for computing compact

spaces where images are compared. Comparison of a new

query against the dataset is estimated as accumulation of the

atlas-image-to-single-template and single-template-to-query-

image measures; This aspect may lead to a suboptimal

selection, given that the employed measure is not guaranteed

to match all distance properties. Another approach in [6]

estimates atlas functions from an offline-computed image

cluster. A new query image is assigned to one of resulting

groups using a similarity index between the average cluster

segmentation and a query image pre-segmentation, calculated

using the whole-population atlas. However, performance

depends not only on the size and number of clusters, but

also on the resulting pre-segmentation, which can be already

biased by the whole-population atlas.

For supporting brain tissue segmentation, we pro-

pose a new Kernel-based Atlas Image Selection, com-

puted in the Embedding Representation space (termed

KAISER), that projects all dataset images into a compact

eigendecomposition-based space. In such space, regular dis-

tances can be more accurately calculated, due to its low

dimensionality, and latent data structure is highlighted. The

KAISER approach is compared against the whole-population

atlas and conventional demographic multi-atlas selection on

a four tissue image labeling task. Results suggest that our

approach outperforms other methods used in this work in

both, average performance and repeatability.

II. BACKGROUND

A. Bayesian medical image segmentation

As proposed in [3], [7], automatic labeling of medical im-

ages can be stated within a Bayesian classification framework

as estimation of a label set, L= {lr ∈ [1, C] : r∈Ω}, from

a given set of measurements (or image), I = {xr ∈ R
d},

where a single label, lr, is assigned to the r-th spatial element

(or spel), depending on the d-dimensional measurement

vector xr, where C ∈N is the total number of considered

labels or classes, and Ω is the spel domain.

In the Bayesian framework, provided a given query image,

the probability of having a label set, P (L|I), the probability

of occurring the image given the labeling, P (I|L), and the
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label prior probability, P (L), are together related as:

P (L|I) ∝ P (I|L)P (L) (1)

In most of medical imaging applications, measurement

vector distributions of different tissues are overlapped. Con-

sequently, the probabilities P (I|L) and P (L) (termed atlas

functions), can vary spatially, so that a set of Bayesian

classifiers is applied along Ω, where each one deals with

independent small regions. Hence, the probability of ob-

taining a label set given a query image is represented

as P (L|I) =
∏

r∈Ω P (lr = c|xr), where P (lr = c|xr) =
P (xr|lr=c)P (lr)/P (xr) is the probability of obtaining the

label c ∈ [1, C] at spel r and given the measurement xr,
P (xr|lr=c) is the conditional probability of observing the

measurement xr at r given the label lr = c, P (lr) is the label

prior probability, and P (xr) is the evidence probability.

B. Learning model parameters

Therefore, the segmentation task relies on estimation of

the atlas functions from a given set of N pre-labeled atlas

images, X= {In,Ln}, where the r-th spel of the n-th image

is assigned to the measurement vector xn
r and the class lnr .

Hence, provided X, the prior P (lr = c) and evidence P (xr),
both the atlas functions can be computed as:

P (lr = c) = E{δ(lnr − c) : ∀n ∈ N} (2a)

P (xr) =
∑

c∈C
P (xr|lr = c)P (lr = c) (2b)

where δ(·) is the delta function and notation E{·} stands for

the expectation operator.

In each class, xr is assumed to be normally distributed [7],

x∼N(µc
r,Σ

c
r), where mean µc

r∈R
d and covariance Σc

r ∈
R

d×d class parameters are estimated as:

µc
r = E{xn

r |l
n
r = c : ∀n ∈ N} (3a)

Σc
r = E{(xn

r − µc
r)(x

n
r − µc

r)
⊤|lnr = c : ∀n ∈ N}, (3b)

Since the N -image set is mostly heterogeneous, some

objects can bias the segmentation obtained over a given query

image. Hence, we propose to enhance the above explained

approach by computing the atlas functions for a given subject

from a subpopulation of the entire dataset, which in turn

depends on a new introduced pair-wise image similarity.

C. Image Similarity Measure

In order to encode the affinity between a couple of images,

{In, Im}, from a given image set X, we introduce the

following kernel function:

ζ(In, Im) = 〈ϕ(In), ϕ(Im)〉 (4)

where ϕ(·) maps from the original domain, Ω, into a

Reproduced Kernel Hilbert Space H. Notation 〈·, ·〉 stands

for the inner product. Generally, it holds that |H| → ∞,
so that |Ω|≪|H| can be assumed. Nevertheless, there is no

need for computing ϕ(·) directly. Instead, the well-known

kernel trick is employed for computing the elements of the

matrix Z ∈ R
N×N encoding pair-wise image similarities.

The matrix Z is estimated from the set X and holding

elements znm = ζ(In, Im) with znm ∈ R
+.

Aiming to minimize redundant information, we se the

well-known common principal components analysis (PCA)

that decomposes the similarity matrix as: Z = V ΛV ⊤,

where Λ ∈ R
N×N is a diagonal matrix containing the

ranked in descending-order eigenvalues of Z and matrix

V ∈ R
N×N holds its column eigenvectors. In this sense,

to represent In we use a vector un ∈ R
p obtained as:

un=
∑

m∈N znmṽm, where ṽm is the m-th column of V

truncated to the p most relevant components in terms of its

corresponding eigenvalue.

D. Image Feature Extraction

Here, the original spatial domain specifically corresponds

to Ω =R
W×H×L, so that any spel is an index triplet in

the form: r=(i, j, k), with i∈ [1,W ], j ∈ [1, H ], k∈ [1, L].
Thus, each image can be arranged as an ordered slice set

I= {Sk : k ∈ [1, L]}, being Sk = {xr : r = (i, j, k)}, with

Sk∈R
W×H the k-th (W ×H)-sized matrix slice.

Assuming smooth variations between adjacent slices on

I, inter-slice relationship is encoded by the kernel function:

γ(Sk,Sk′) = 〈ϕ(Sk), ϕ(Sk′ )〉. Thus, the output symmet-

ric matrix G ∈ R
L×L with real-valued elements, gkk′ =

γ(Sk,Sk′), becomes the inter-slice kernel (ISK) of I. More-

over, provided gkk′ = gk′k and gkk = 1, each image In

can be represented by the upper triangular ISK elements

as a vector yn∈R
L(L−1)/2. Therefore, the image similarity

measure in Eq. (4) is represented as: ζ(In, Im) = f(yn,ym),
where f(·, ·) is the introduced kernel function.

III. EXPERIMENTAL SETUP

A. Database

The OASIS dataset is a brain imaging study, holding

an MR image collection from 416 subjects, aged 18 to 96
years old, including diagnosed very mild dementia (70), mild

dementia (28), moderate dementia (2), and healthy (316) sub-

jects. For each of them, three or four T1-weighted MR scans

obtained within a single imaging session are included (see

a sample subject in Fig. 1), from which a motion-corrected

co-registered average image is obtained. Additionally, each

subject is provided with ground-truth segmented gray matter

(GM), white matter (WM) and cerebro-spinal fluid (CSF)

structures. A fourth label (BG) is included in the present

study, aiming to model the background of images, as the

regions with no provided label.

B. Preprocessing

In order to enable comparisons between patient-dependent

atlas and a whole-population atlas, alignment and inten-

sity normalization are performed as preprocessing steps, as

opposed to [3], [7] where both steps are included in the

Bayesian framework. For alignment, each image is registered

to the MNI305 template by an affine transformation so that

the whole dataset is referenced to the Talairach space and re-

sampled to match the template size (W =197,H=233,L=
189). Then, the intensity normalization procedure is carried
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Fig. 1. Sample subject of the OASIS dataset publicly available in
http://www.oasis-brains.org. Top row: Motion corrected MR
image. Bottom row: Provided structure segmentation. Left to right: Axial,
Sagittal and Coronal axes.

out by scaling each spel value so that the average intensity

of the white matter is the same in all MRIs.

C. Proposed Image Feature Extraction

We note the ISK of a given image as yn ∈R
L(L−1)/2.

Hence, a new representation space of order 104 is achieved,

instead of the original image domain of order 106. Specifi-

cally, to compute γkk′ of each image, we use the Gaussian

kernel γ (Sk,Sk′) = exp
(

−||Sk − Sk′ ||2F /(2σ
2
κ)
)

, where

σκ ∈ R
+ is a scale parameter and notation ‖ · ‖F stands

for the Frobenius norm. Since an appropriate σκ value

spans widely the values of G and taking into account that

lim
σk→0

Var(G(σk)) = 0, lim
σk→∞

Var(G(σk)) = 0, optimization

of the scale parameter is performed by maximizing the

following element-wise matrix variance:

σ∗
κ = argmax

σ
{Var{γkk′ (σ) : ∀k 6= k′}} , (5)

Fig. 2 shows resulting tuning sagittal ISK curve, where the

mean and standard deviation values are computed from the

whole set of MR images.
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Fig. 2. Scale parameter vs. kernel element-wise variance for the sagittal
ISK. Mean and standard deviation values are plotted.

D. Kernel-based Image Similarity

Given the aforementioned image feature extraction, a

new low-dimensional, compact space is built from the

ISK representation by using, in the Eq. (4), the well-

known Gaussian kernel on each image’s ISK: ζ(In, Im)=

exp
(

−‖yn − ym‖22/(2σ
2
ζ )
)

, where notation ‖ · ‖2 stands

for the Euclidean norm and the scale σζ ∈R
+ is tuned as

in Eq. (5). A scale of σζ = 9 is obtained using the above

proposed tuning procedure. The resulting kernel is depicted

in Fig. 3(a), where each row and column represents a given

image on the dataset. Images are ordered by gender (firstly)

and age (secondly).

Therefore, the PCA-based projection space is computed

from kernel Z. As seen in Fig. 3(b) showing the four

largest decomposition eigenvectors, there exists an inherent

structure, hidden on the image distribution, that is hard

to identify in the original space domain (Ω), but easily

identifiable in the proposed projected space. As a result,

patient-dependent atlases lead to more accurate segmentation

results than the whole-population atlas.

(a) Kernel matrix using the ISK features
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(b) Data projection along the first four eigenvectors

Fig. 3. Kernel matrix (top) and eigen-projection (bottom) representations
for the OASIS dataset.

Finally, the well-known L-curve criterion is used to tune

the value p to truncate the number of components employed

on the projected representation v ∈ R
p. For such criterion,

the minimum distance to origin from a curve, composed by

the normalized eigenvalues and the percentage of compo-

nents, has to be found. For the OASIS dataset, such distance

is found at the ninth component. Hence, subsequent analyses

are performed with p = 9.

E. Tissue Labeling Performance

Taking into account the image similarity measure de-

scribed in Section II-C, we propose four strategies for

choosing the image subset used for computation of the
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atlas functions: i) using the whole dataset on the Bayesian

Classification Framework (FULL) [3], as a state-of-the-

art comparative baseline; ii) extracting Nk samples using

the proposed Kernel-based Atlas Image Selection from the

Embedding Representation, termed KAISER; iii) randomly

choosing a subset of Nr images (RAND), as the comparative

approach used in [4], with Nr = 20 and 10 folds. iv)

Selecting demographically affine images to the query image

(DEMG), using gender and age categories, as in [1].

For measuring segmentation quality of above described

approaches, we assess agreement between resulting seg-

mentations and the labels provided for each dataset image.

Namely, we employ the Dice index: d = 2|A∩B|/(|A|+|B|),
where A and B are respectively the provided and estimated

regions of the compared tissue, and | · | stands for the

number of spels on a given region. Additionally, to prove the

repeatability of the approaches, a leave-one-out (LOO) cross-

validation scheme is employed. Specifically for KAISER, the

number of neighbors Nk has to be tuned; this procedure is

done by intensive searching of the largest average-accuracy-

over-standard-deviation ratio in the LOO scheme. Search is

performed over the interval Nk = [5, 21], as shown in Fig. 4,

where the optimum value is found at Nk = 13 neighbors.
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Fig. 4. Overall accuracy segmentation versus the number of selected
closest neighbors for the proposed KAISER. Errorbar is displayed for a
LOO validation scheme.

Once tuned the number of neighbors, the Dice index and

overall accuracy are computed for the compared approaches

in the LOO validation scheme. Mean and standard deviation

results, provided in Table I, show that proposed KAISER

outperforms FULL on all items.

TABLE I

SEGMENTATION RESULTS FOR CONSIDERED SELECTION APPROACHES

BG WM GM CSF Acc

FULL [3] 100 81.5 ± 8.8 85.8 ± 5.4 84.5 ± 7.6 96.1 ± 1.4
KAISER 100 92.1 ± 1.9 95.1 ± 1.4 96.2 ± 1.0 98.7 ± 0.3
RAND [4] 100 74.6 ± 6.7 81.7 ± 5.1 79.2 ± 7.0 94.8 ± 1.3
DEMG [1] 100 77.2 ± 5.9 83.6 ± 5.7 82.2 ± 6.7 95.4 ± 1.4

IV. DISCUSSION AND CONCLUDING REMARKS

Here, a new atlas selection strategy for supporting brain

tissue segmentation is proposed based on an image similarity

measure computed on a low dimensional representation

space, resulting in two main contributions: Firstly, a new

inter-slice-kernel-based image feature extraction is recom-

mended, where the relationships along a given image axis

are encoded. Secondly, a KPCA-based projection space is

computed from the ISK representation so that the inher-

ent structure of the data distribution is highlighted. Such

contributions allowed the proposed approach to outperform

the baseline (FULL) and demographic atlas-based (DEMG)

approaches, at least 10%, while proving that the selection of

the subset is better than a randomly chosen one (RAND).

Also, from obtained results, the following comments arise:

Regarding the scale parameter for the ISK feature extrac-

tion, an stable measure can be seen on Fig. 2, leading us

to conclude that such kind of parameter tuning is a suitable

approach for large datasets. Nevertheless, its benefit has to

be proved on other machine learning tasks and kinds of data.

The computed pairwise image kernel, shown in Fig. 3(a)

and sorted by gender (firstly) and age (secondly), shows a

stacked-block-like shape, leading to infer that there are rela-

tionships clustering demographic groups. Later, the KPCA-

based projection, provided in Fig. 3(b), proved that, in fact,

there is a hidden data distribution structure due to the non-

linear relationship among the eigenvectors.

Overall, obtained segmentation results (see Table I) show

that the KAISER proposal achieved the largest average

and the least deviation values for all Dice indexes and

accuracy. Hence, our proposal exhibits the best classification

performance and the most repeatability. The above leads to

an improvement, regarding the atlas selection, on multi-atlas-

based image labeling approaches.

As future work, three main research lines are proposed.

i) Since obtained decomposition eigenvectors showed non-

linear relationships, other non-linear embedding techniques,

e.g. Laplacian eigenmaps and local linear embedding, can

be used for highlighting the essential structure. ii) A future

research field is to prove the ability of the proposal in more

complex structure labeling tasks, such as subcortical seg-

mentation. iii) Finally, new feature extraction methodologies

based on mixing ISK along the three main axes can be

explored, aiming encode all dynamics into shorter and more

compact versions of the MR volumes.
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