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Abstract— Due to recent technical advancements of three-
dimensional ultrasound imaging systems, applications of this
imaging modality have been expanding from the fetal imaging to
cardiac- and abdominal-diagnosis. Among all internal organs,
diagnosing the kidney has a paramount importance for rapid
bedside treatment of trauma and kidney stone patients us-
ing ultrasound images. Although three-dimensional ultrasound
provides higher level of structural information of kidneys,
manual kidney diagnosis using three-dimensional ultrasound
images requires a highly trained medical staff, due to the
extensive visual complexity which three-dimensional images
contain. Therefore, computer aided automated kidney diagnosis
becomes very essential. Due to the challenging problems of
ultrasound images, such as speckle noise and inhomogeneous
intensity profile, kidney segmentation in three-dimensional
ultrasound images has not been sufficiently investigated by
researchers. In this paper, we first propose a new automated
kidney detection approach using three-dimensional Morison’s
pouch ultrasound images. Then, we proposed a shape-based
method to segment the detected kidneys. A preprocessing step
is utilized to overcome the ultrasound challenges. Based on a set
of 14 ultrasound volumes, we have evaluated the detection rate
of our proposed kidney detection approach which is 92.86%.
For kidney segmentation, we compared our proposed method
with an existing approach, and the performed statistical analysis
strongly validates the superiority of our proposed method with
p = 0.000032.

I. INTRODUCTION

Thanks to the recent technological advancements in three-
dimensional (3-D) ultrasound imaging, and also under de-
velopment innovations in 3-D ultrasound beam-forming
[1][2][3][4], 3-D ultrasound imaging is expanding its medical
applications beyond what has been conceived a few years
ago [5]. There are some reasons to use ultrasound: (1) un-
like Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI), ultrasound imaging is non-invasive and does
not impose any restrictions on the use to patients; (2) Since
it is portable, unstable patients are not required to be moved
from a place with resuscitation facilities to another place
for imaging, unlike CT and MRI; (3) Compared to CT
and MRI, 3-D ultrasound provides real-time imaging. In 3-
D ultrasound, the location of the ultrasound signal in 3-D
space is known. This provides a volumetric representation
of internal organs, which could not be achieved with 2-D
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B-scan ultrasound images [6]. 3-D ultrasound imaging also
provides some other advantages: (1) Using 3-D ultrasound,
new images are visualized, which otherwise, a clinician
should mentally build it up from two-dimensional (2-D) ul-
trasound images; (2) 3-D ultrasound provides more accurate
quantitative assessment of volumes by eliminating geometric
estimations like the ellipsoid based formula [6].

Kidney diagnosis using 3-D ultrasound has a vital signif-
icance in some medical applications. Kidney is visible in
abdominal Sonography, specifically in the Morison’s pouch
view. A computer aided diagnosis of the kidney can be used
on 3-D ultrasound volume of the Morison’s pouch view for
detecting trauma and kidney stone patients. Trauma is a free
fluid region caused by an internal bleeding, and appears
as a dark (low echoic) region [7]. Abdominal trauma is
usually located around the upper boundary of the kidney
[8], and thus, kidney detection is required as an important
step for trauma diagnosis. Since kidney stones highly scatter
ultrasound beams, they cause dark shadows in kidney images,
which can be characterized to detect kidney stones.

The kidney has a unique structure in 3-D ultrasound im-
ages which makes it distinguishable from all other abdominal
organs. However, there are some challenges toward kidney
detection: (1) speckle noise is caused by the nature of the
ultrasound imaging, which results in having low qualities
in ultrasound images [9]; (2) there exist gaps among the
kidney boundary [10]; (3) kidney stones create shadows,
which partially occlude the kidney shape; (4) because of
the ultrasound probe miss-alignment, the kidney shape is not
fully visible. Due to these challenges, kidney segmentation
using 3-D ultrasound images has not been thoroughly inves-
tigated.

Kidney segmentation has been extensively investigated in
CT and MRI images such as: Tsagaan et al. (2001) [11],
Tsagaan et al. (2002) [12], Lin et al. (2006) [13], Chen
and Bagci (2011) [14], Li and Fei (2008) [15], Khalifa
et al. (2011) [16] and Akbari et al. (2012) [17]. Kidney
segmentation using ultrasound images has been investigated
by Fernandez and Lopez (2005) [18], and Prevost et al.
(2011) [19]. Fernandez and Lopez (2005) [18] proposed a
method to segment the kidney boundary in 3-D ultrasound
images, which applies Markov random field and active
contours (MRF-AC). This work performs 2-D segmentation
to outline kidney boundaries on each ultrasound slice, and
then combines segmented contours in all slices to recon-
struct a 3-D kidney shape. This approach requires an user
intervention to adjust the kidney shape in a single slice
of the 3-D volume, and therefore, it is a semi-automated
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approach. In another work, Prevost et al. (2011) [19] applied
the three-dimensional contrast enhanced ultrasound images
in which the kidney appears brighter than other regions.
In this method, a 3-D deformable model is applied which
supports both global and local deformations. As the main
contribution of this work, user intervention, which is a set of
manual landmarks inside or/and outside kidneys, are directly
imposed on the energy functional to improve the kidney
segmentation accuracy. The success rate of this approach
depends on the contrast enhanced ultrasound images, and its
performance in 3-D ultrasound images has not been reported.
In addition, this approach does not provide fully-automated
kidney segmentation.

In this paper, we propose a new approach to detect and
segment kidneys in 3-D ultrasound images. We incorporate
our prior knowledge on kidney shapes variability to generate
a probabilistic kidney shape model (PKSM). This model
maps voxels on a 3-D grid into a scalar value which represent
the probability of being inside the kidney. In the kidney
detection step, we perform a fast preprocessing to generate a
binarized volume, and then we use PKSM to search using the
3-D correlation for the best matching position in the volume,
and then, we decide whether a kidney exist or not. In the
next step, we first perform a more demanding preprocessing
to de-speckle an input volume, and then, we use PKSM to
initialize a deformable model on the detected kidney position.
Afterward, we apply a global deformation to fit the kidney
shape model inside the ultrasound volume, and then, a level-
set propagation is engaged to finely outline the kidney shape.
The rest of the paper is organized as follows: In section II,
we briefly represent our proposed approach. In section III,
we provide evaluation results, and compare our method with
an existing approach. In section IV, we discuss results and
perform a conclusion.

II. THE PROPOSED METHOD

A. Problem Definition

Lets define V ∈ <Nx×Ny×Nz is a 3-D ultrasound image
which maps a voxel in a 3-D grid into a scalar value
representing an intensity level, V (n,m, k) ∈ [0, 1, · · · , 255]
where n ∈ [1, · · · , Nx], m ∈ [1, · · · , Ny], and k ∈
[1, · · · , Nz]. For each 3-D ultrasound volume with a kidney,
V i, a binarized mask, Bi ∈ <Nx×Ny×Nz , is manually
drawn which is 1 for voxels belonging to the kidney, and
0 elsewhere. The binarized volumes are used for generating
PKSM, and for evaluating the kidney segmentation accuracy.
We define two problems to be addressed in this paper: (1)
decide whether an input 3-D ultrasound image contains a
kidney, and if it exists, where is it located; (2) segment
the detected kidney. Since the proposed approach will be
used in an online processing scheme [20], kidney detection
should be both fast and accurate. When, the correct view with
a kidney is detected, the kidney should be very accurately
segmented, and its computational time must not be a concern.
The proposed processing pipeline is designed to observe the
above-mentioned concerns.

B. Generating Probabilistic Kidney Shape Model

Since kidney shapes are highly variable, a probabilistic
model is required to cover a variety of upcoming kid-
neys. We define the probabilistic template as, Tmp ∈
<N

Tmp
x ×NTmp

y ×NTmp
z , where 0 ≤ Tmp(x, y, z) ≤ 1. A

subset of binarized masks are selected, Bi ∈ <N
i
x×N

i
y×N

i
z

and i ∈ Utmp. An arbitrary Bi
∗
, where i∗ ∈ Utmp, is selected

to create the initial Tmp. Then, other binarized masks,
i ∈ Utmp, are registered on Tmp, using the rigid-body
registration [21], aiming to remove the dependency of Tmp
on miss-alignments of binarized volumes. Therefore, Tmp
will only carry information of the kidney shape variability.
Our probabilistic model only relies on the mean. The block
diagram of generating PKSM is shown in Fig. 1.
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Fig. 1. Displaying the block diagram of generating the probabilistic kidney
shape model.

C. Kidney Detection

As discussed in subsection II-A, kidney detection should
be fast enough to be adopted in an online process. Thus, to
reduce the computational cost, our proposed kidney detection
is performed in half-scale. The half size volume, V ihf , is
generated using linear interpolation.

In the next step, two processing blocks are added to
overcome ultrasound images including speckle noise and
low contrast. To reduce speckle noise, a 3-D finite impulse
response (FIR) filter, which is a multiplication of a zero
mean 3-D Gaussian function and the Hamming window, is
used, and the resultant volume is V idn. NGH is the width
of Gaussian-Hamming filter [20]. The Gaussian filter is
both separable and isotropic, and therefore reduces the 3-
D filtering task into three one-dimensional convolutions.
The Hamming window is utilized to produce the FIR filter
because it minimizes the maximum side lobe.

The denoised volume, V idn, still suffers from a low con-
trast intensity profile. This histogram inefficiency results in
an insufficient difference between intensity profiles of the
kidney and its surrounding voxels, which may cause to
fail kidney detection. The remedy of this problem is to
apply histogram equalization. In histogram equalization, a
transformation function is defined based on the cumulative
density function (CDF), which transforms histogram regions
with high concentration into wider regions, while other his-
togram regions are transformed into narrower regions [22].
Histogram equalization operates as a global transformation,
and is not able to capture local intensity conditions of
the entire image. The solution to this problem is localized
histogram equalization which operates on localized intensity
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profiles [23]. In the localized histogram equalization, for
each voxel in the volume, V idn(n,m, k), a block of neighbor
voxels is selected as, N(n,m, k) = {V idn(n + x′,m +
y′, k+ z′)|x′, y′, z′ ∈ {−NL, . . . , NL}}. NL is the width of
the neighbor block. Then, histogram equalization is applied
on N(n,m, k), and the equalized intensity level of the
center point is taken as, V iEq(n,m, k). Since this method
independently calculates the transformation function for each
voxel, its computational cost is high. Our observation shows
that a good trade off between the quality and computational
cost is achieved by selecting NL = 11.

In the next step, the equalized volume, V iEq , is segmented
into two regions: dark and bright. Kidney voxels are dark,
while surrounding voxels of kidney are brighter. Due to
inconsistent intensity profile of internal tissues throughout
an ultrasound volume, using a global threshold for the entire
volume might not be useful. Therefore, we selected the
ordinary Kriging approach, which is a local thresholding
method [24]. This method utilizes spatial covariance and
indicator Kriging to locally segment voxels into dark and
bright regions. The output of ordinary Kriging segmentation
is a binarized volume, V iBin, which values 0 and 1 correspond
to non-kidney and kidney voxels, respectively.

The main step of the proposed kidney detection algorithm
is to search for a kidney shape in the binarized volume, V iBin.
This is performed based on the prior knowledge of the kidney
shape. PKSM is used as a 3-D template to find the maximum
matching voxel based on the 3-D correlation, as a potential
kidney. The value corresponding to the maximum matching
voxel is compared with a threshold value, thKD, to decide
whether a kidney exists or not. If the maximum correlation
is greater than thKD, the position of the potential kidney is
selected as a detected kidney position, ~PDK . The value of the
threshold is set to thKD = 3000 to maximize the number
of true-positives detections (T-P) and true-negatives (T-N)
detections in our ultrasound volume database. The processing
pipeline of the proposed kidney detection method is shown
in Fig. 2.

D. Kidney Segmentation

The key idea of our proposed kidney segmentation is
to use PKSM to initiate the segmentation. Then we apply
an affine deformation to fit PKSM into the kidney in the
ultrasound volume. Using this step, the kidney segmentation
method is initiated closer to the actual kidney boundaries,
and as a result, kidney segmentation is improved because,

1) kidney segmentation requires less efforts to converge
into the final segmentation result, and therefore it
spends less computations;

2) kidney segmentation is a non-rigid deformation, and
therefore, it is prone to leak into gaps within kidneys’
boundaries, and using the improved initialization, the
chance of leaking into non-kidney regions is mini-
mized.

The fitted PKSM is used to initialize level-set function. Then,
a level-set propagation is applied as a non-rigid deformation

to finely segment a kidney. Our proposed kidney segmenta-
tion combines rigid and non-rigid deformations (Fig. 3).

Ultrasound volumes are contaminated by multiplicative
noise, also known as speckle noise [9]. Our goal is to reduce
the speckle noise while preserving the kidney shape. The
anisotropic diffusion filter (ADF) [9] has shown to be a
useful method to de-speckle our 3-D ultrasound images.
It strongly filters an image in regions away from object
boundaries to suppress speckle noise. In regions close to
kidney boundaries, ADF performs smoothing in the parallel
direction to the object boundaries. Therefore, it not-only
preserves edges, but also emphasizes edge information. Since
speckle reduction anisotropic diffusion is an iterative process,
it is computationally demanding, and therefore, it is only
used in the kidney segmentation step, but not for kidney
detection.

The initialization step of kidney segmentation has a great
impact on the final segmentation result. A good initialization
is required (1) to avoid segmentation to trap in a local
minima, and (2) to reduce the convergence time of kidney
segmentation. We first align PKSM on ~PDK in the ultrasound
volume, and generate a new volume, V iφ ∈ <Nx×Ny×Nz .
Then, a rigid-body deformation based on affine transforma-
tion is applied on V iφ to maximize the fitness of PKSM
on the kidney inside the ultrasound volume [21]. Using a
rigid-body deformation, the speed of kidney segmentation is
increased since less non-rigid deformation, which is more
computationally demanding, is required.

After performing the rigid-body deformation, we are ready
to initialize the level-set segmentation. We define a level-set
function as, φ(~P , t), where ~P ∈ <3 and t represents the
temporal domain. Therefore, φ(~P , t), maps a point in a four-
dimensional space into a one-dimensional space, φ : <4 →
<. The initial level-set function is φ(~P , t = 0) = φ0(~(P )),
and is set in our framework as follows,

φ0(~P ) =

{
−1 V̂ iφ(~P ) = 0

1 V̂ iφ(~P ) > 0
. (1)

Afterward, we apply the level-set propagation based on the
regional information [25], which is also known as the region-
based active contour, to segment the kidney. Compared to
edge-based deformable model, the region-based approach is
less sensitive to noise and weak edges. Let Ω be a bounded
open subset of <3, and V i : Ω 7→ < is a 3-D ultrasound
image, and φ is the initialized level-set function. The general
expression of the energy functional for region-based level-set
is formulated as follows,

J(φ) = νin

∫
Ω

gin(x, φ(x))H(φ(x))dxdydz

+ νout

∫
Ω

gout(x, φ(x))(1−H(φ(x)))dxdydz

+ νc

∫
Ω

gc(x, φ(x))δ(φ(x)) ‖∇φ(x)‖ dxdydz,

(2)

where the first and second terms are energy terms related to
the inside and outside regions of the segmentation surface,
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Fig. 2. Displaying the block diagram of our proposed kidney detection. The bottom left nad bottom right histograms belong to the de-speckled volume
and equalized volume, respectively. The red circle in the top right image shows the detected kidney position.

respectively. The last term relates to the voxels which are
located on the segmentation surface. Also, gin(.), gout(.) and
gc(.) are functions of intensity levels of voxels in object,
background and over the contour. νin, νout and νc are
regulation parameters which control the influence of each
energy term in the surface evolution. H(.) and δ(.) are
Heaviside and Dirac functions [25].
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Fig. 3. Displaying the block diagram of our proposed kidney segmentation.

III. RESULTS

We have implemented the proposed methods of kidney
detection and kidney segmentation in MATLAB. We have
utilized a database of 28 3-D ultrasound images, in which
14 volumes are correct Morison’s pouch views with kidneys,
and 14 volumes are randomly selected without kidneys. For
the volumes with kidneys, ground truth data of their kidneys
as binarized masks are manually generated. 4 binarized
masks are used to generate PKSM, and the rest are used
for evaluating our kidney segmentation.

Our proposed kidney detection method [20] is more sen-
sitive to 2 parameters: the width of the Gaussian filter,
NGH , and the width of localized histogram equalization, NL.
We performed a parameter analysis using all 28 volumes
to check different combinations of NGH and NL, which

is shown in Fig. 4. The parameter analysis of NGH and
NL can not be separately performed, since any change in
the Gaussian filter parameter, NGH , affects the localized
intensity profile at each voxel, which influences the local
histogram equalization performance. Based on the performed
parameters analysis, we set NGH = 7 and NL = 11, aiming
to minimize the detection error. Based on this settings,
the detection accuracy is (#true positive detections + #true
negative detections)/(#total number of detections)=92.86%.

0

5

10

15

5

10

15

20

0

5

10

15

NL

NGH

# 
In

co
rr

ec
t D

et
ec

tio
ns

Fig. 4. Displaying parameters analysis of NGH and NL. The detection
error for each combination of these two parameters are shown in the graph.

We have compared the kidney segmentation accuracy of
our proposed method with MRF-AC [18], which is also
developed in MATLAB. MRF-AC requires a manual inter-
vention to fit the initial contour inside a kidney. To provide a
fair comparison with our proposed approach, we substituted
the manual intervention with our proposed automated PKSM
alignment, discussed in section II-D. To perform the compar-
ison, we excluded those 4 volumes which are used to create
PKSM. Thus, the comparison is performed for 10 volumes,
and the Dice’s coefficient is used as the metric of calculating
the segmentation accuracy. The kidney segmentation results
are demonstrated in Table I. Accordingly, the average and
standard deviation of kidney segmentation accuracies of our
proposed method and MRF-AC are 0.6552 ± 0.0595 and
0.4691 ± 0.1026, respectively. The result of the paired t-
test is t = 7.6496 and p = 0.000032, which strongly
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confirms (p < 0.01) our proposed method provides a higher
segmentation accuracy compared to MRF-AC. In addition
to the segmentation accuracy, our proposed method outper-
forms MRF-AC since our proposed method provides a fully
automated kidney segmentation approach, whereas MRF-AC
requires manual intervention to fit the kidney shape model
inside a kidney. Fig. 5 shows 2-D slices of two segmented
kidneys.

Fig. 5. Displaying two examples of kidney segmentation, in which 2-D
slices are shown. Red lines show the automatically segmented kidneys, and
green lines show manually segmented kidneys.

TABLE I
COMPARING KIDNEY SEGMENTATION RESULTS OF OUR PROPOSED

METHOD WITH MRF-AC USING DICE’S COEFFICIENT.

# MRF-AC Our Proposed Approach
1 0.5032 0.6133
2 0.4337 0.6339
3 0.4610 0.6452
4 0.2414 0.6109
5 0.5347 0.7493
6 0.5014 0.7123
7 0.5820 0.6724
8 0.4508 0.6246
9 0.5940 0.7285

10 0.3893 0.5612

IV. CONCLUSION

In this paper, we proposed an approach to automatically
detect and segment kidneys in 3-D abdominal ultrasound
images. Our proposed kidney detection and segmentation
methods are based on the probabilistic kidney shape model.
We utilized 4 manually segmented kidneys to create the
probabilistic kidney shape model. Our segmentation results
confirm the superiority of our proposed method, compared
to MRF-AC.
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