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Abstract— In this paper, we proposed a new method
(CSR+OSD) for the extraction of irregular open prostate
boundaries in noisy extracorporeal ultrasound image. First,
cascaded shape regression (CSR) is used to locate the position
of prostate boundary in the images. In CSR, a sequence of
random fern predictors are trained in a boosted regression
manner, using shape-indexed features to achieve invariance
against position variations of prostate boundaries. Afterwards,
we adopt optimal surface detection (OSD) to refine the prostate
boundary segments across 3D sections globally and efficiently.
The proposed method is tested on 162 ECUS images acquired
from 8 patients with benign prostate hyperplasia. The method
yields a Root Mean Square Distance of 2.11±1.72 mm and a
Mean Absolute Distance of 1.61±1.26 mm, which are lower
than those of JFilament, an open active contour algorithm and
Chan-Vese region based level set model, respectively.

I. INTRODUCTION

High Intensity Focused Ultrasound (HIFU) is being used
throughout the world as a therapeutic procedure for prostate
cancer and benign prostate hyperplasia (BPH). An important
component in BPH removal using HIFU is to position and
focus on the targeted prostate tissue which is obstructing
the urethra. The boundary segment between the prostate and
the bladder is particularly important in ultrasound image
guided BPH tissue removal. Automatic prostate boundary
extraction from ECUS images faces considerable challenges.
First, extracorporeal ultrasound (ECUS) images are usually
noisier than transrectal ultrasound (TRUS) images. Second,
the above mentioned prostate boundary segment is an irreg-
ular open contour. Last, the prostate boundary is of large
variation between patients with BPH which makes shape
modeling extremely difficult.

Numerous prostate segmentation methods have been de-
veloped in literature, either for TRUS, MR, or CT images
(see [1] for an extensive review). However, existing work
on prostate segmentation in ECUS images is very rare and
none of the methods were tested on ultrasound images of
prostate with BPH. In [1], the prostate segmentation methods
are classified into four groups according to the information
used to guide the segmentation: contour and shape based
method, region based methods, supervised and un-supervised
classification methods, and hybrid methods. The first group
of methods, e.g. active contour model [2] and curve fitting
[3], [4] alone are often ineffective because of the unreliable
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and even broken edges in ECUS images. Active shape model
and active appearance model based methods [5], [6] need
good initialization since they are local optimization. Region
based methods such as graph partitioning [7] and regional
level set [8], solve the segmentation problem in an energy
minimization framework. However, region based methods
are not directly applicable when the targeted boundary is
an open contour, and neither are the classification methods
which cluster or classify the pixels into the prostate or the
background based on feature vectors.

In this paper, we propose a new method (CSR+OSD) for
the extraction of the prostate boundary segments with BPH in
ECUS images. The cascaded shape regression (CSR) method
[9] is able to efficiently locate the prostate boundary against
position variations, given a set of training data. Following
CSR, the optimal surface detection (OSD) method [10] is
adopted to optimize the detected boundaries in a sequence
of ultrasound images simultaneously.

II. CASCADED SHAPE REGRESSION

In the CSR method, a prostate boundary is repre-
sented by a sequence of M landmark points: S =
[x1, y1, ..., xM , yM ]T . As a landmark-based shape model,
an essential requirement is that landmarks on all training
samples are located at corresponding positions. To find
these landmarks, equally-distanced landmarks are selected
automatically from the manually drawn prostate boundary.
Each training sample, {(Ii, Ŝi)}, consists of an image Ii and
a true boundary Ŝi, i = 1, 2, ..., N .

A cascaded regressor R = (R1, R2, ..., RT ) consists of
T weak regressors. Given an image I and an initial prostate
boundary S0, each regressor generates a boundary increment
vector δS to update the previous boundary and the output of
regressors Rt depends on image I and the previous boundary
St−1:

St = St−1 + δSt,

with δSt = Rt(I, St−1), t = 1, 2, ..., T. (1)

Each regressor is trained to minimize the difference between
the true boundary and the new boundary updated by the
regressor, i.e.,

Rt = arg min
R

N∑
i=1

‖Ŝi − (St−1
i +R(Ii, S

t−1
i )‖2. (2)

We use random ferns [11] as weak regressors in the
cascade. A fern regressor is created by randomly selecting
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s features from a vector of F features and comparing them
with s thresholds randomly selected. In this way, each input
feature vector is divided into one of 2s bins. Each bin b is
associated with a regression output δSb that minimizes the
alignment error of training samples Ωb that fall into the bin:

δSb = arg min
δS

∑
i∈Ωb

‖Ŝi − (Si + δS)‖2. (3)

Eqn. (3) is solved by simply taking the mean of all boundary
differences. At each stage in the cascaded regression, a pool
of K ferns are randomly generated and the one with the
lowest regression error is chosen.

A. Shape-indexed Features

Given a set of training data, we used simple shape-indexed
features to learn each regressor. Shape-indexed features mean
that a pixel is indexed relative to the currently estimated
boundary rather than the original image coordinates. These
features are computed as the intensity difference between
two pixels in the image. In [9], the prostate shape was fitted
to an ellipse to reflect the translation, scale, and rotation of
the shape. However, this method cannot be applied to the
extraction of an irregular open boundary of prostate.

To compute one shape-indexed feature from the cur-
rent estimated boundary, we randomly sample two pixels,
(dx1, dy1) and (dx2, dy2), within a circle of radius r cen-
tered at (0, 0) and one random integer n ∈ [1,M ]. The
intensity difference at the two pixels, p1 = (xn + dx1, yn +
dy1) and p2 = (xn+dx2, yn+dy2), result in a shape-indexed
feature I(p1) − I(p2). Here (xn, yn) are the coordinates of
nth landmark points on the current boundary.

B. Training for CSR

For each training sample Si, we use the average of all

training boundaries
(
S0 =

∑N
j=1 Ŝj

N

)
and the true boundary

of the rest of training samples {Ŝj |j = 1, 2, ..., N, j 6= i} to
initialize the CSR. The CSR is trained to move the boundary
to the true boundary Ŝi even if the initial positions are far
from Ŝi. For each testing sample, CSR is only initialized
for once by the average boundary because it is the single
boundary estimate that minimize the training error before
regression starts. The training process for CSR is summarized
in Algorithm 1.

III. OPTIMAL SURFACE DETECTION

Given the CSR result as an estimation of the prostate
boundary, we adopted the optimal surface detection (OSD)
method [10] to refine the prostate boundary segments across
3D sections globally and efficiently. The method transformed
the surface segmentation problem into computing a minimum
s-t cut in a derived arc-weighted directed graph. An optimal
surface controlled by the cost function and geometric con-
straints is found in a polynomial time.

Initialize S0
i , i = 1, 2, ..., N ;

for t = 1 to T do
for i = 1 to N do

Compute shape-indexed features;
end
Train K random ferns on all N current boundaries;
Select the best fern which gives the lowest training
error;
Compute δSb = Rtb for each bin b in the best fern;
for i = 1 to N do

Sti = St−1
i + δSb, suppose the features of St−1

i

fall into bin b, b ∈ {1, 2, ..., 2s};
end

end
Return R = (R1, R2, ..., RT );

Algorithm 1: Training for cascaded shape regression
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Fig. 1. (a) Overall graph structure used in OSD. Dotted vertical lines
(in red) are columns. (b) Detailed structure in two adjacent columns: blue
vertical arrows for intra-column arcs and red slant arrows for inter-column
arcs.

A. Graph construction

Suppose a sequence of ECUS images consists of L frames,
each containing a 2D prostate contour resulted from CSR
with M landmark points. A terrain-like surface is defined
by a function N : (x, y) → N (x, y), where x ∈ x =
{1, 2, ...,M}, y ∈ y = {1, 2, ..., L}, and N (x, y) ∈ z =
{1, 2, ..., Z}. Z is the number of voxels on a column along
the normals of the surface.

A node-weighted graph G = (V,E) is constructed ac-
cording to I, where each node V (x, y, z) ∈ V represents
exactly one voxel at (x, y, z) ∈ I. Intra-column arcs connect
nodes of a same column Col(x, y) from V (x, y, z) (z > 1)
to V (x, y, z − 1), i.e.,

Ea = {〈V (x, y, z), V (x, y, z − 1)〉|z > 1}. (4)

Inter-column arcs connect nodes of adjacent columns, i.e.

Er =

{
{〈V (x, y, z), V (x± 1, y,max(1, z −∆x)〉}
{〈V (x, y, z), V (x, y ± 1,max(1, z −∆y)〉},

(5)

where ∆x and ∆y are smoothness parameters controlling
surface connectivity. Each arc in E = {Ea∪Er} is assigned
an infinity cost.
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B. Cost function

A cost value c(x, y, z) is computed for each voxel at
(x, y, z) of I. c(x, y, z) is inversely related to the likelihood
that I(x, y, z) belongs to the desired surface. A weight
w(x, y, z) is then assigned to each node V (x, y, z):

w(x, y, z) =

{
c(x, y, z), if z = 1,
c(x, y, z)− c(x, y, z − 1), otherwise.

(6)

To construct an arc-weighted directed graph, two special
nodes, the source s and the sink t, are added. Additional
directed arcs are created from s to nodes with w(x, y, z) < 0
and from nodes with w(x, y, z) ≥ 0 to t. These arcs are of
cost |w(x, y, z)|.

An approximation of Chan-Vese cost functional [12] was
proposed to be used in voxel cost computation in [10].
Specifically, the voxel cost is assigned as the

c(x, y, z) =
∑
z′≤z

(I(x, y, z′)−a1)2 +
∑
z′>z

(I(x, y, z′)−a2)2,

(7)
where a1 and a2 are the mean intensities in the interior and
exterior of the surface. They can be approximated by

â1(x, y, z) = mean(I(x′, y′, z′1)), (8)
â2(x, y, z) = mean(I(x′, y′, z′2)), (9)

where z′1 ≡ {z′|z′ ≤ max(1, z − |x′ − x|∆x − |y′ − y|∆y)}
and z′2 ≡ {z′|z + |x′ − x|∆x + |y′ − y|∆y) < z′ ≤ Z}.

In ECUS images, the interior of the surface (prostate)
appears to be brighter than the exterior of the surface
(bladder), i.e. â1 > â2. We propose a modified cost function
to make use of this condition:

c′(x, y, z) =

{
c(x, y, z), if â1 > â2,
c(x, y, z) + 100(â1 − â2)2, otherwise,

(10)

so that edges with â1 < â2 are penalized with higher cost.
Once the graph is constructed and the cost function is

defined, the optimal surface that intersects one node of each
column and minimizes globally the cost function is computed
with an s-t cut algorithm [13].

IV. RESULTS

We validate the performance of our method (CSR+OSD)
on a total of 162 ECUS images acquired from 8 patients
with BPH. From each patient, a sequence of prostate images
is acquired by a motor controlled ultrasound transducer at
a constant rotation angle of one degree per 6-7 frames. The
resolution of the images is 800×600 pixels (0.354 mm/pixel).
The ground truth (true boundaries) are manually drawn and
each prostate boundary is described by M = 20 landmarks.
The parameters of the CSR are set as follows: number of
training data N = 50, number of phases in the cascade T =
390, fern depth s = 5, number of ferns K = 32, radius r =
300, and number of features F = 100. To avoid bias in such
a splitting in the experiment, five-fold cross validation (4 for
training and 1 for testing) is adopted. We set the parameters

in OSD as follows: ∆x = 5, ∆y = 8, the sampling step
along columns δ = 1, and the sampling range is 30 pixels.
Our method is implemented in C on a PC with 2.83GHz
CPU and 8GB RAM. The training and testing time of CSR
are 23 minute for 32 images and 0.03 seconds per image,
respectively. The computational time of OSD is 3.3 seconds
per image.

We use average Root Mean Square Distance (RMSD)
and Mean Absolute Distance (MAD) to evaluate the seg-
mentation result. The results are compared with those from
JFilament [14] and Chan-Vese region-based level set model
[12]. JFilament is a software tool based on stretching open
active contours or “snakes” [15], developed for segmenta-
tion and tracking of 2D and 3D filaments in fluorescenece
microscopy images. The parameters in JFilament are set
to: Alpha = 0, Beta = 0, Gamma = 400, Weight = 1,
Stretch Force = 100, and Deform Iterations = 200. The
parameters in Chan-Vese model are set to: µ = 0.01 ∗ 2552,
λ1 = λ2 = 1, ν = 0, and the number of iterations is 30.
When computing RMSD and MAD, the corresponding points
to each landmarks on the true boundary are those closest
points in the results of JFilament/Chan-Vese model. The
prostate boundary segments detected by different methods
are compared in Fig. 2.

For the snake based JFilament, we initialize it by the av-
erage of all true boundaries from the same patient/sequence.
Due to the lack of strong gradient nearby the snake, JFila-
ment tends to shrink and fail to capture prostate boundaries
of high curvature. Chan-Vese model is initialized by a circle
manually drawn inside the bladder on each sequence. As
a region based level set method, Chan-Vese model is less
sensitive to initialization and more robust to the noise in
the images. Its RMSD and MAD are slightly lower than
CSR+OSD in sequences where the intensities in the bladder
are constantly lower than the intensities in the prostate
(patient 2, 6, and 7). However, when region homogeneity
is violated, Chan-Vese model generates fragmented regions
and fails to capture the prostate boundary (patient 3 and 5).
During the testing of CSR+OSD, we use the average of all
training boundaries S0 (which come from all the patients) as
the initialization for the testing images. Although the initial-
ization of CSR+OSD is much worse than those of JFilament
and Chan-Vese model, CSR+OSD still outperforms them
notably in term of overall performance (see Table I).

V. CONCLUSIONS

A novel approach has been proposed for the extraction of
prostate boundary segments with BPH in ECUS images. By
using CSR with shape-indexed feature, our approach is able
to efficiently locate the prostate boundary against position
variations in ECUS images. With the help of OSD, efficient
and accurate segmentation is achieved.
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TABLE I
SEGMENTATION ACCURACY (IN MM).

JFilament Chan-Vese CSR CSR+OSD
Patient Samples RMSD MAD RMSD MAD RMSD MAD RMSD MAD

1 17 3.78 3.08 2.81 2.08 2.66 2.13 1.60 1.24
2 13 2.20 1.85 1.29 1.08 1.49 1.19 1.34 1.17
3 26 2.33 1.98 14.22 8.81 2.12 1.65 1.70 1.26
4 28 5.83 4.83 1.99 1.45 2.72 2.12 1.86 1.37
5 11 2.74 2.16 8.20 6.25 2.67 2.09 2.04 1.61
6 23 4.82 3.78 2.75 2.02 5.11 3.85 4.43 3.30
7 20 3.10 2.66 1.22 0.93 2.11 1.61 1.31 1.05
8 24 4.74 3.89 3.04 2.44 2.90 2.26 2.12 1.62

Total 162 3.91±2.19 3.21±1.94 4.57±4.82 3.16±3.11 2.81±1.88 2.17±1.40 2.11±1.72 1.61±1.26

GT JFilament Chan−Vese CSR+OSD

GT JFilament Chan−Vese CSR+OSD

GT JFilament Chan−Vese CSR+OSD

Fig. 2. Prostate boundary extraction results shown in red solid line. First column: ground truth. Second column: JFilament initialized by green dashed
line. Third column: Chan-Vese model initialized by green circle. Fourth column: CSR+OSD initialized by green dashed line.
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