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Abstract— Piecewise linear function fitting is ubiquitous in
many signal processing applications. Inspired by an application
to shear wave velocity imaging in ultrasound elastography, this
paper presents a discrete state-space Markov model for noisy
piecewise linear data and also proposes a tractable algorithm
for maximum a posteriori estimation of the slope of each seg-
ment in the piecewise linear function. The number and locations
of breaks is handled indirectly by the stochastics of the Markov
model. In the ultrasound shear wave imaging application, these
slope values have concrete physical interpretation as being the
reciprocal of the shear wave velocities in the imaged medium.
Data acquired on an ellipsoidal inclusion phantom shows that
this algorithm can provide good contrast of around 6 dB and
contrast to noise ratio of 25 dB between the stiff inclusion and
surrounding soft background. The phantom validation study
also shows that this algorithm can be used to preserve sharp
boundary details, which would otherwise be blurred out if a
sliding window least squares filter is applied.

I. INTRODUCTION

Hepatocellular carcinoma is a leading cause of cancer
related deaths in both developed and developing countries
throughout the world [1]. Radiofrequency or microwave
ablation is a common treatment of smaller tumors especially
in patients that are not candidates for liver surgery or a
transplant. Monitoring the ablation process is paramount to
ensure that the right volume of liver tissue is treated because
untreated cancer cells may cause the tumor to recur.

Ultrasound shear wave velocity (SWV) imaging is gaining
popularity as a promising tool for differentiating regions
of the imaged tissue based on stiffness. In particular, this
imaging mode can be of immense use for monitoring tumor
ablation procedures where clinicians must accurately control
the size of the ablation to ensure that almost all the cancerous
cells in the tissue are treated. At a high level, SWV images
are produced by tracking a shear wave pulse in the imaging
plane. Tracking is achieved using the popular “time of
arrival” method [2] which records the time at which the
shear wave pulse arrives at different locations away from
the source. The slope of this time of arrival plot is therefore
equal to the reciprocal of the wave speed, also known as
“slowness” [3].

This paper presents a model for noisy piecewise linear
data which is applied to the SWV estimation problem. Test
data is acquired on a tissue mimicking phantom using an
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electrode vibration setup, called electrode vibration elastog-
raphy (EVE) [6]. This technique is minimally invasive in the
sense that it requires only the use of small (on the order of
a 100 microns) displacements to be applied to the ablation
needle.
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Fig. 1. Cross-sectional view of the phantom is shown with the inclusion,
partially ablated region and surrounding background material. The needle is
used to generate a shear wave pulse which is tracked at different locations
away from the needle over lines of constant depth. This gives a wave arrival
time plot. The shear wave velocity is equal to the reciprocal of the slope of
this plot.

II. THEORY

A theoretical model for piecewise linear data is presented
in this section. A computational algorithm for estimating
slopes from noisy data using this model is also discussed. A
physical interpretation of the model will become apparent
in Section III which describes the shear wave imaging
experiment. It is also worth noting that the slope estima-
tion algorithm presented here is general enough to handle
piecewise linear data arising in many other applications as
well.

A. Model for Piecewise Linear Data

It is assumed that the user has a reliable estimate of the
minimum and maximum possible slope values that can be
present in the underlying noiseless data. For instance, in the
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shear wave imaging application there are physical limits on
the wave speed in tissues. Hence, without loss of generality,
it can be assumed that the slopes lie in the unit interval [0, 1].
This interval is discretized to M levels so that the “states” for
the slope values is the finite set S = {0, 1

M−1 , . . . ,
M−2
M−1 , 1}.

A total of N equidistant data samples are available at discrete
sampling locations 1 ≤ n ≤ N . A Markov structure is
imposed on the sequence Sn of slope values as follows. Let
S0 have a uniform probability mass function on the set S.
For n ≥ 1, let Sn = Sn−1 with probability p, otherwise Sn is
chosen uniformly randomly from S \{Sn−1}. The piecewise
linear function is realized by accumulating these slopes, i.e.
X0 = 0 with probability 1, and Xn+1 = Xn + Sn+1 for
n ≥ 1. Finally, the observed function values follow the
relation Yn = Xn + Wn where Wn are i.i.d. normally
distributed with zero mean and (unknown) variance σ2.

The posterior density function of the unknown function
values given the data can be easily derived by exploiting the
Markov structure:

p(x1, . . . , xN |y1, . . . , yN ) ∝ p(y1, . . . , yN |x1, . . . , xN )

= p(y1|x1)p(x1|x0)
N∏
i=2

p(yi|xi)p(xi|xi−1, xi−2).

Taking the logarithm, and using the relation xi =
∑i

j=1 sj
(for i ≥ 1), the maximum a posteriori (MAP) estimation
problem for the slope values sn can be written as

(sMAP
1 , . . . , sMAP

N ) = argmax
(s1,...,sN )∈SN

− 1

2σ2

N∑
i=1

(yi −
i∑

j=1

sj)
2

+

N∑
i=2

log

(
p δsn=sn−1

+
1−p
M−1

δsn6=sn−1

)
(1)

where δ is the Kronecker delta function which evaluates to 1
when the condition in the subscript is true and 0 otherwise.

Note that this model is parametrized by two unknown
parameters p and σ2 which will affect the final result.
Intuitively, if p is very close to 1, one expects to see
longer runs of constant slope values, i.e. a fit with few
change points. Moreover, a larger value of σ2 can potentially
outweigh the second term in the maximization problem (1)
resulting in a (trivial) least squares line fit. In practice, the
value of p can be selected based on the number of slope
change points one expects to see in the raw data. The value
of σ2 can be estimated from the raw data by calculating its
sample variance after detrending.

B. Slope Estimation Algorithm

The MAP estimation problem can be solved using a
Viterbi-like algorithm by traversing a trellis of possible slope
values at each index 1 ≤ n ≤ N [7]. However, the trellis
search can become computationally burdensome for large
N because of the

∑j
i=1 si term in the objective function

which depends on all the slope values into the past. An
approximate optimization is used in this paper in the interest

of processing speed. The objective function to be maximized
is non-differentiable (due to the presence of Kronecker delta
functions). Moreover, the discrete nature of the problem
makes it challenging to use standard optimization routines
which rely on a “hill climbing” scheme in a continuous
space. Therefore, it is more convenient to work with a
continuous version of the problem by approximating the
Kronecker delta function using a narrow Gaussian spike
δsn=sn−1

≈ e−(sn−sn−1)
2/k2

where k is used to control
the width of the spike. Moreover, the slope values are now
allowed to vary freely in the interval [0, 1]. This leads to the
following relaxed formulation:

argmax
(s1,...,sN )∈[0,1]N

− 1

2σ2

N∑
i=1

(yi −
i∑

j=1

sj)
2

+

N∑
i=2

log
(
p e−(sn−sn−1)

2/k2

+

1−p
M−1

(1− e−(sn−sn−1)
2/k2

)

)]
. (2)

This optimization is solved using a sequential quadratic pro-
gramming (SQP) routine, in which each constituent quadratic
program is solvable in polynomial time [5]. The result is
then quantized to the set S. Although there is no theoretical
guarantee that this is in fact close to the exact MAP estimate
obtained by solving the original problem in (1), the results in
Section IV on real data indicate that it works well in practice.

III. MATERIALS AND METHODS

A. Tissue Mimicking Phantom

The tissue mimicking phantom used for data acquisition
consists of a gel block with oil droplets in a gelatin matrix.
The stiffness can be controlled by varing the proportion
of oil in the matrix; details on the construction of this
phantom can be found in the paper by Madsen et al. [4].
The phantom contains an ellipsoidal inclusion of higher
shear modulus than the surrounding background material.
A stainless steel needle is firmly glued to the center of the
inclusion and mimics the ablation needle in an actual tumor
ablation procedure. A smaller region of intermediate stiffness
is present on one side of the inclusion to mimic a partially
ablated area. A cross-section of the phantom is shown in the
top panel in Fig. 1.

B. Shear Wave Generation and Imaging

A shear wave pulse is generated by vibrating the needle
vertically using an actuator (Physik Instrumente, Germany)
and radiofrequency ultrasound echo data is acquired simul-
taneously (Ultrasonix SonixTouch, Canada) using triggered
acquisition. A pulse actuation of 100 µm amplitude and
20 ms width is used. Pseudo-high frame rate echo data
is acquired using a phase locked acquisition technique [6]
which relies on multiple vibrations of the needle to acquire
vertical bands of data and assembling these to form complete
frames of echo data. A linear array transducer with center
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Fig. 2. Results from shear wave velocity reconstruction using approximate stochastic piecewise linear fitting. (a) B-mode image of the phantom, (b)
slowness map and (c) shear wave velocity image obtained by calculating the reciprocal of the slowness image. For comparison, a SWV image (d) obtained
from a windowed least squares slope estimation algorithm is also shown.

TABLE I
SHEAR WAVE VELOCITY ESTIMATES

Inclusion Par. Abl. Background

SWV (m/s) 2.73± 0.68 1.91± 0.53 1.26± 0.15

SNR (dB) 15.5± 3 12.8± 3.6 21.8± 3.8

SWV LSQ (m/s) 3.03± 0.98 2.11± 0.32 1.33± 0.32

SWV SSI (m/s) 2.8± 1.1 2.3± 0.8 1.3± 0.4

Estimated mean shear wave velocity and SNR for the three
different regions in the experimental phantom obtained are shown.
For comparison, the shear wave velocities obtained using a 7-
point moving average least squares filter (LSQ), and phantom
measurements using a commercial shear wave imaging system
(SSI) are also shown.

TABLE II
IMAGE QUALITY

Incl./Par.Abl. Par.Abl./Backgr. Incl./Backgr.

CNR (dB) 7.46± 6.5 12.1± 6.7 25.1± 4.7

C (dB) 3.07± 1.6 3.67± 0.73 6.74± 1.8

CNR LSQ (dB) 4.98± 2.9 16.1± 2.9 15.9± 2.6

C LSQ (dB) 3.16± 0.6 4.07± 0.6 7.23± 0.7

Contrast (C), and contrast-to-noise ratios (CNR) (in dB) obtained
from shear wave velocity estimates for three pairs of regions are
shown. Standard deviations shown here are calculated using ten
independent datasets, after converting to dB. Corresponding values
obtained from a 7-point moving average least squares filtering method
are also shown.

frequency set at 5 MHz was used. Ten independent datasets
were acquired for image quality evaluation.

Measurements were also made with a commercial Super-
sonic Imagine system (Aix-en-Provence, France) using the
clinical shear wave velocity imaging mode (SSI).

C. Data Processing

A one-dimensional crosscorrelation based displacement
estimation algorithm is used to determine the displacement
at each pixel in the image over time (axial 2 mm windows,
75% overlap). The peak of the displacement profile at each
pixel is used to estimate the arrival time of the shear wave
front at different locations away from the needle [2]. This
produces a wave arrival time plot over lines of constant depth
as shown in the lower panel of Fig. 1.

The optimization problem in (2) is then solved to fit
piecewise linear functions both to the left and right sides of
the needle along lines of constant depth. k = 10−3 is used
to approximate the Kronecker delta function with a narrow
Gaussian pulse. The value of p = 0.95 is used (expecting
around 5 slope changes per 100 data samples) and σ2 = 1
is used as an estimate for the noise variance. Estimated
local slope values are then displayed as a slowness map.
The reciprocal of these slope values are used to generate
SWV images1. Three different regions of interest (ROI) of
size 1 cm × 2 cm are selected in each image and three
different image quality statistics are calculated. The signal
to noise ratio (SNR) is defined as SNR = 20 log10(µ/λ),
contrast as C = 20 log10(µ1/µ2) and contrast to noise ratio
as CNR = 20 log10((µ1 − µ2)

2/(λ21 + λ22)) [8], where
µ denotes the mean; λ2 is the sample variance calculated
over any ROI; and subscripts denote two different ROIs. For
comparison, a sliding window linear least squares method
is also used to estimate shear wave velocities. A 7 point
moving window is used, and the slope is estimated by fitting
a line using 3 neighboring data points on either side of each
data point. The image quality metrics described above are
recalculated with this method.

IV. RESULTS

A B-mode image of the phantom together with the slow-
ness image and SWV image are shown in Fig. 2. Note that
the three different stiffness areas are easily visible in the
B-mode image of the phantom because the materials were
designed with different acoustic echogenicities on purpose.
Delineation in actual tissues is not easily noticeable in B-
mode. High stiffness regions can be clearly visualized with
well demarcated boundaries in both the slowness and SWV
images. The low velocity artifact near the center of the
inclusion is due to lack of tracking quality in regions very
close to the needle. The reconstruction quality obtained
using the algorithm presented in this paper provides sharper

1The final goal of shear wave elastography is to image shear moduli; SWV
is only used as a surrogate for stiffness. Alternatively, to avoid calculating
the reciprocal of noisy data, the slowness image can also be used as the
surrogate.
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boundary details compared to the standard least squares
filtering method (Fig. 2(c) vs. (d)).

The estimated SWV using ROIs in 10 different datasets are
shown in Table I. These agree quite well with the standard
least squares method and also with the measurements made
using SSI. Image quality metrics are shown in Table II.
The highest contrast to noise ratio of 25 dB and contrast
of over 6 dB is obtained between the stiff inclusion and soft
background material. The partially ablated and background
regions are the most difficult to discern, even visually in
Fig. 2 and is also indicated by the lower CNR and C values.
The contrast values obtained from the least squares filtering
method is almost equal to that from the algorithm proposed
in this paper. The CNR values are much lower with least
squares filtering.

V. DISCUSSION AND CONCLUSIONS

This paper presented a stochastic model for piecewise
linear functions and applied this model to estimate slopes in
arrival time plots encountered in electrode vibration based
shear wave elastography. The algorithm is approximate in
that it only solves a relaxed version of the full MAP estima-
tion problem. However, results using phantom experiments
suggest that it provides useful visualization of stiff inclusion
boundaries. Quantization of the slope values into M user de-
fined bins provides a useful speed vs. accuracy tradeoff. This
method can be implemented on any commercial ultrasound
scanner capable of producing high frame rate radiofrequency
ultrasound echo data frames.

Note that there are a variety of artifacts present in the SWV
images that are specific to EVE. The time of arrival estimator
is reliable only when the shear wave front travels purely in a
lateral direction away from an ideal line source (the needle
in this case). This assumption breaks down in areas above
and below the inclusion, which may be the cause for high
velocity artifacts in these regions. Moreover, the low velocity
artifact near the center of the inclusion has been consistently
observed in previous EVE studies as well. They should not
pose a serious obstacle in applications because it is more
crucial to locate the outer boundary as the tissue immediately
surrounding the needle is surely completely ablated.

REFERENCES

[1] G Lee, AI Schafer. Cecil medicine: expert consult premium 24th ed.
Elsevier Health Sciences, 2011, ch. 202.

[2] ML Palmeri, MH Wang, JJ Dahl, KD Frinkley, KR Nightingale,
“Quantifying Hepatic Shear Modulus in vivo Using Acoustic Radiation
Force,” Ultrasound Med. Biol., vol. 34, no. 4, 2008, pp. 546–558.

[3] S. Stein, M. Wysession, Basic Seismological Theory, in: An Introduc-
tion to Seismology, Earthquakes, and Earth Structure, 1st ed., Malden,
MA: Blackwell, 2003, Ch. 2, Sec. 2.5.7, pp. 69.

[4] EL Madsen, MA Hobson, H Shi, T Varghese, GR Frank, “Tissue-
mimicking Agar/gelatin Materials for Use in Heterogeneous Elastog-
raphy Phantoms,” Phys Med Biol., vol. 50, 2005, pp. 5597–5618.

[5] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed., New York:
Springer, 2006.

[6] RJ DeWall, T Varghese, EL Madsen, “Shear wave velocity imaging
using transient electrode perturbation: phantom and ex vivo valida-
tion,” Medical Imaging, IEEE Transactions on vol. 30, no. 3, 2011,
pp. 666-678.

[7] LR Rabiner “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE vol. 77
no. 2, February 1989, pp. 257–286.

[8] T. Varghese, J. Ophir, An analysis of elastographic contrast to noise
ratio, Ultrasound in Medicine and Biology, vol. 24, no. 6, July 1998,
pp. 915–924.

2864


