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Abstract— This paper presents an algorithm for three dimen-
sional (3D) reconstruction of tumor ablations using ultrasound
electrode vibration elastography. Shear wave velocity, which
is used as a surrogate for tissue stiffness, is estimated by
perturbing the ablation needle and tracking frame-to-frame
displacements using radiofrequency ultrasound echo data. This
process is repeated over many imaging planes that share a
common axis of intersection collinear with needle. A 3D volume
is reconstructed by solving an optimization problem which
smoothly approximates shear wave velocities on a stack of
transverse planes. The mean shear wave velocity estimates
obtained in the phantom experiments are within 20% of those
measured using a commercial shear wave imaging system.

I. INTRODUCTION

Ultrasound based shear wave elastography is a promising
new imaging modality that uses ultrasound to infer mechan-
ical properties of the imaged tissue [1]. It is a valuable tool
for ascertaining mass location and stiffness for diagnosis
of malignant breast masses [2], cancers in the prostate and
thyroid, liver fibrosis and hepatic cancers [3]. The present
work pertains to ultrasound shear wave imaging assisted
monitoring of hepatic tumor ablation procedures. Although
hepatocellular carcinoma (HCC) is not the most common
type of cancer, it has a high mortality rate—according to
the National Cancer Institute, there were over 30,000 new
cases of liver cancer in 2013, and over 20,000 deaths [4]
and historical trends suggest that the incidence rate has been
on the rise. Ablation is a minimally invasive procedure for
treating hepatic tumors. However, there is high probability
of recurrence if cancerous cells are left untreated during the
ablation procedure. The main goal of the present work is to
reliably reconstruct the boundary of the ablated tissue using
ultrasound shear wave elastography. This can potentially
provide immediate feedback to the clinician and enable better
ablation procedure planning.

Two dimensional (2D) monitoring of liver ablations has
been studied for over two decades. Elastograms can provide
useful stiffness information when displayed alongside a
conventional B-mode (grayscale) ultrasound image because
stiffness variations are not easily visible on B-mode scans
[5]. In theory, 2D elastography methods can be extended
to 3D by using a matrix array transducer. Recently Wang
et al. [6] demonstrated a method for 3D tracking of shear
waves in muscle using a 2D matrix ultrasound transducer.
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Unfortunately, such transducers have higher manufacturing
costs and full 3D tracking requires processing capability
(such as modern graphical processing units) that may not be
available on low-end commercial ultrasound systems. As a
result 3D shear wave elastography is still in a nascent phase,
as evidenced by a lack of full 3D stiffness imaging mode on
any commercial ultrasound systems. The present work uses
a conventional one dimensional array transducer to acquire
multiple planes of data around the ablation needle in a
“spoke-wheel” fashion and proposes a fast 3D reconstruction
algorithm capable of generating volume estimates from just
a few image planes.

II. METHODS AND MATERIALS

A. Phantom Design

An oil-in-gelatin based tissue mimicking (TM) phantom
was used in this study. The phantom consists of a 14×14×9
cm3 gel block of “background” material to mimic healthy
untreated tissue, with a stiffer ellipsoidal inclusion in the
center to mimic the ablated region. An irregularly shaped
intermediate stiffness region is present on one side of the
ellipsoid. A steel rod which plays the role of an ablation
needle is glued to the center of the inclusion. The gel block
assembly is covered with a layer of safflower oil to prevent
desiccation. A cross-sectional view of the phantom (with the
intermediate stiffness region visible) is shown in Fig. 1. The
phantom was designed so that the three different stiffness
regions are easily visible in B-mode. In real tissue, ablated
and normal tissue are not so easily distinguishable. Details
of the material used for phantom construction can be found
in the paper by Madsen et al. [11]. For validation of the
algorithm, ground truth shear wave velocities (SWV) are
measured using a commercial ultrasound system (Supersonic
Imagine, France).

B. Electrode Vibration Elastography Setup

The electrode vibration elastography setup consists of an
actuator driven by an actuator controller (Physik Instrumente,
Germany). The actuator motion is synchronized to a custom
scan sequence programmed on the ultrasound scanner (Ul-
trasonix Medical Corp., Canada) to acquire radiofrequency
(RF) echo data. The imaging probe is operated at a center
frequency of 5 MHz. RF echo data frames are acquired
synchronously with the needle vibration which sets up a
shear wave pulse. The needle in this case acts as a line
source, with a cylindrical shear wave front traveling outward
and away from this line. Many snapshots of the image
plane are acquired at high frame rates while this wave front
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Fig. 1. (Top) A cross-section view of the phantom is shown. The stiff
ellipsoidal tumor region is surrounded by softer background material. There
is also an intermediate stiffness area on one side of the ellipsoid. (Bottom)
Wave arrival time processing is performed along lines of constant depth.
The zoomed inset shows how the Loess algorithm uses a span of 7 data
points around any location of interest to estimate the slope via weighted
linear least squares.

propagates in the field of view of the transducer. A phase-
locked acquisition sequence is used to obtain pseudo-high
frame rate RF data to track the shear wave pulse [7].

Multiple intersecting image planes of RF echo data are
acquired following the scheme shown in Fig. 2. Each image
plane is manually aligned by using angle markers on the
phantom container and the needle as a guide. Misalignment
variations are averaged out by acquiring five independent
datasets [8].

III. RECONSTRUCTION ALGORITHM

The reconstruction algorithm consists of two distinct steps:
1) Shear wave velocity (SWV) estimation on individual

image planes using a Loess filter.
2) 3D volume reconstruction over a fine grid of points

using the set of intersecting planes of SWV images.
These steps are discussed in the following subsections.

A. Shear Wave Velocity Reconstruction

Since the needle is vertically oriented in every image
plane, the shear wave pulse can be assumed to travel laterally
away from the needle. Only axial displacement information
is needed in this case because, by definition, particle motion
in a shear wave is perpendicular to the direction of the
wave. Frame-to-frame displacement information can be used
to estimate the time of maximum displacement at any pixel
in the image (also called time-to-peak [10]) and is used as
the time of arrival of the shear wave at that point. Focusing
attention on a line of constant depth in any image plane
(as shown in Fig. 1), the wave arrival time can be plotted
as a function of lateral distance away from the needle. The
reciprocal of the local slope of this plot gives an estimate of
SWV at any given pixel in the image plane.
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Fig. 2. (Top) Image planes over which ultrasound echo data is acquired
by rotating the transducer are shown. A particular transverse plane which
is perpendicular to all image planes is also shown. Shear wave velocity
images are generated on each image plane separately. (Bottom) The location
of data samples along concurrent lines available on a particular transverse
image plane is shown. The optimization routine reconstructs the shear wave
velocities on a fine grid over this transverse plane. A stack of such transverse
planes is used to produce the 3D visualization.

Since the arrival time information can be quite noisy, finite
differencing can produce an undesirable noise amplification.
Therefore a linear Loess smoother [9] is used to estimate
the slope. It uses weighted linear least squares with tricubic
weight function with a span of 7 data points (i.e. 3 points
on either side of the current location), centered around each
data point. This is shown in the zoomed inset in Fig. 1. The
tricubic weight function is given by wk = (1 − |k/3|3)3
for |k| ≤ 3 and wk = 0 otherwise, where k = 0 is the
current sample, k = ±1 denote the immediate neighbors on
either side, and so on. Let yk denote the noisy arrival time
values for |k| ≤ 3. The slope obtained from weighted linear
least squares is given by

∑3
k=−3 kwkyk∑3
k=−3 k2wk

. SWV is equal to the
reciprocal of this slope value.

The same process is repeated to generate SWV maps for
all imaging planes. These images are used in the next step
for 3D reconstruction of the ablated volume.

B. Three Dimensional Reconstruction

A 3D reconstruction using a fine grid of points is desirable.
However, the problem may become intractable because the
number of grid points can become too large. For instance,
even with just 100 points along the three axes, the total
number of 3D grid points is 106. Therefore, a simpler
approximate approach is taken here by decomposing the 3D
problem into many decoupled 2D reconstruction problems.
SWV is reconstructed on transverse planes of constant depth,
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and these reconstructions are stacked to form a 3D visualiza-
tion. The number of transverse planes is equal to the number
of samples along the axial direction in any image plane.
On any given transverse plane, SWV estimates are available
along radial lines that intersect at a common central point.
The algorithm approximately infers the values on a fine grid
over the entire plane.

As shown in Fig. 2, SWV estimates are available along
concurrent radial lines. These data points may not neces-
sarily coincide with the grid points over which shear wave
velocities are to be approximated. The reconstruction result
must satisfy two requirements: (1) it should agree with the
known data points, and (2) it should be smooth. The first
requirement is enforced through bilinear interpolation. Each
data point value is assumed to obey a linear combination
of the (unknown) values at the four nearest grid neighbors.
All the data points are vectorized into a tall vector v and
the unknown grid point values in another vector g. The
bilinear interpolation requirement can be written as Mg = v
where M is an “interpolation matrix” whose entries are the
coefficients for bilinear interpolation at each data point. In
particular, M is sparse and each row has only four non-
zero entries. This system of linear equations may not have a
unique solution because the number of grid points is usually
much larger than the number of data points (i.e. M has
fewer rows than columns). Tikhonov regularization [12, Ch.
8] is used to bypass this ill-posedness. A matrix D which
produces second order finite differences is constructed; each
row carries coefficients involved in a second order central dif-
ference calculation at each grid point. The vector of second
derivatives is then given by Dg. Again, it is worth noting that
D is square, sparse, banded diagonal, with only five non-zero
entries per row. The unknown g can be retrieved by solving
the following regularized least squares optimization problem:

minimize ||v −Mg||2 + λ||Dg||2 (1)

by choice of g. A closed form solution is given by (MTM+
λDTD)−1MTv, which can be calculated very efficiently
due to the sparse, banded diagonal structure of the matrices
involved. Note that the matrix inverse should not be explicitly
computed; a sparse linear equations solver should be used
instead. This reduces the computational complexity of cal-
culating the inverse of a sparse matrix O(w2P ) where w is
the width of the non-zero band and P is the grid size (i.e. the
number of rows in the square matrix D). The computations
for this paper were performed using MATLAB (Natick, MA).

The choice of λ affects the final fit: a larger value produces
more smoothing because it puts more weight on the penalty
term in (1). An objective method for choosing λ is briefly
discussed in the Appendix.

IV. RESULTS

Results of SWV reconstruction on two image planes are
shown in Fig. 3. The partially ablated region is visible in the
first image plane, and can also be seen in the corresponding
B-mode image. Results of transverse plane reconstruction ob-
tained from such image planes are shown in Fig. 4. Fig. 4(a)

TABLE I
SHEAR WAVE VELOCITY ESTIMATES IN M/S

4 image planes 16 image planes SSI

background 0.7480± 0.0794 0.7516± 0.0802 0.9± 0.07

irregular region 1.0196± 0.0190 0.9910± 0.0248 1.1± 0.05

ellipsoid 1.2569± 0.1099 1.2407± 0.1219 1.2± 0.03

Values of SWV for the three regions of interest are shown. The number of
imaging planes used for 3D reconstruction is varied from 4 to 16. These
values are within 20% of the shear wave velocity values for the background
and 5% for the ellipsoid, measured using a commercial imaging system
(SSI).

uses four image planes whereas Fig. 4(b) uses sixteen image
planes for the transverse plane approximation. Only one
transverse plane at half the maximum depth is shown in each
case. Note that the reconstruction with four image planes
appears smoother than the sixteen plane reconstruction. This
is because the voids between the image planes is larger when
using fewer image planes, and the optimization algorithm 1
fills in these voids with a smooth surface whose second order
derivative is small.

The SWV estimates obtained from three different ROIs are
shown in Table I. Note that the estimates obtained from both
the 4-planes and 16-planes reconstructions are similar in the
sense that the one standard deviation intervals overlap. The
mean SWV estimates are within 20% of the “ground truth”
values measured using the commercial system.

A 3D reconstruction showing three sliced planes is shown
in Fig. 5.
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(a) 4 image planes
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(b) 16 image planes

Fig. 4. Two sample transverse plane reconstructions shown over a plane
at a depth of 3 cm. (a) was reconstructed using 4 image planes while (b)
was reconstructed with 6 image planes. This is considerably more “detail”
visible in (b) whereas the reconstruction in (a) is much smoother.

V. CONCLUSIONS

This paper presented a computationally tractable algorithm
for 3D shear wave elastography and presented results from a
TM phantom experiment. Although it was assumed that the
needle is perfectly aligned with the axial scanning direction,
the method can be extended to track displacements in 2D.
These displacements can then be resolved parallel to the
needle and arrival time can be estimated at different locations
away from the needle. Moreover, the 3D reconstruction idea
discussed in this paper is not limited to shear wave velocity
processing. The same mathematical formulation can be used
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Fig. 3. B-mode images (a) and (c) and shear wave velocity images (b) and (d) of two different image planes. The partially ablated region is visible in
(a) and (b).

Fig. 5. A three dimensional view of shear wave velocities in the phantom.
The 16-image-plane dataset was used for this reconstruction.

to reconstruct strain, attenuation, temperature or any other
physical quantities that can be estimated from the RF echo
data. The mathematical formulation is general enough to
handle cases where data is not acquired over the entire
volume, in which case only a part of the volume can be
reconstructed and displayed to the clinician.

APPENDIX

Choosing a reasonable λ is important because arbi-
trarily choosing a small (large) value may result in un-
der(over)smoothing. Leave-one-out crossvalidation [12, Ch.
4, Sec. 4.2] is used here to choose λ in an objective manner.
Let N be the number of data points and v(k) denote the kth

element of the data vector v. After fixing a particular value
of λ the regularized least squares problem (1) is solved N
times, leaving out one of the N data points each time. Let
v̂(k) be the missing data point predicted from the fit. The
crossvalidation score function is defined as

S(λ) =
1

N

N∑
i=1

(v̂(k) − v(k))2.

Leave-one-out crossvalidation evaluates S(λ) for different
values of λ and chooses the smoothing parameter that
minimizes the score.
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