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Abstract— In this paper, we present a novel approach for
functional network connectivity in fMRI resting activity using
distance correlation. The proposed method accounts for non-
linear relationships between the resting state networks and
can be used for both single subject and group level analyses.
We showed that the new strategy improves the capacity of
characterization of pathological populations, such as, patients
with disorder of consciousness, when compared to related
approaches.

I. INTRODUCTION

Cumulative research in hemodynamic brain activity mea-
sured in resting conditions, using functional magnetic res-
onance imaging (fMRI), suggests that healthy brain is or-
ganized of large-scale resting state networks (RSNs) of
cognitive relevance [1]. At least ten of these entities have
been consistently identified at the group level: default mode
network (DMN), executive control network left (ECL), ex-
ecutive control network right (ECR), saliency, sensorimotor,
auditory, cerebellum and three visual networks medial, lateral
and occipital [2]. Each resting network is composed by a set
of spatial regions that share a common time course.

Several pathological conditions, such as disorders of con-
sciousness, dementia and Alzheimer’s, among others, have
been studied using the RSN approach [3], [4]. These studies
mainly focused on changes in the spatial pattern of one net-
work, typically the DMN. A recent approach aimed at iden-
tifying multiple RSNs simultaneously at the individual level,
by taking into account both spatial and temporal properties of
the networks [2]. According to this approach, patients with
disorders of consciousness showed the DMN, ECL, ECR
and auditory networks as non-neuronal more often compared
to healthy controls; further voxel-based analyses in these
RSNs indeed showed decreases in functional connectivity
as a function of the level of consciousness. Apart from the
alterations in the spatial pattern of the investigated signal,
temporal changes or dynamic activity of the RSNs is of
equal importance to better comprehend brain function in
pathology [5].

A complementary RSN analysis strategy, which considers
temporal variations of the fMRI dynamics, is the functional
network connectivity (FNC). In this approach, the level
of interaction during spontaneous activity among different
RSNs is assessed by computing pairwise measurements of
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connectivity between the RSN time courses. Typical mea-
sures of interaction include: Pearson’s correlation coefficient
that aims capturing linear relationships among the time-
courses [6], Granger causality that characterizes directional
connectivity [7] and temporal slicing window that allows to
explore the temporal changes of the RSN connectivity [8].
These approaches are based on the underlying assumption
that RSN brain dynamics follows linear regimes. However,
recent evidence suggests that neuronal function of cortical
ensembles during resting state may follow non-linear behav-
iors [9], therefore, usual interaction measurements may be
limited to capture this phenomena.

In this paper, we propose a novel FNC method that ac-
counts for non-linear relationships between different RSNs.
Our method is based on a multiple RSN identification
approach and quantifies the interaction by using the distance
correlation (DC) [10]. The method allows both single-subject
and group-level evaluation and accounts for non-linear rela-
tionships between the RSN time courses. We show that this
approach will improve the capacity of characterization of
the resting dynamics in pathological populations, such as,
patients with disorder of consciousness (DOC), and keeps
similar levels of reproducibility as related approaches.

II. MATERIALS AND METHODS

A. Participants and data acquisitions
Data from 76 subjects were used for this study: 27

healthy controls (14 women, mean age 47 ± 16 years), 24
patients in minimal conscious state and 25 with vegetative
state/unresponsive wakefulness syndrome (20 women, mean
age 50 ± 18 years). All patients were clinically examined us-
ing the French version of the Coma Recovery Scale Revised
(CRS-R) [11]. Written informed consent to participate in the
study was obtained from all patients or legal surrogates of the
patients. For each subject, fMRI resting data were acquired
in a 3T scanner (Siemens medical Solution in Erlangen,
Germany). Three hundred fMRI volumes multislice T2∗-
weighted functional images were captured (32 slices; voxel
size: 3× 3× 3 mm3; matrix size 64; repetion time = 2000
ms; echo time = 30 ms; flip angle = 78; field of view =
192 mm2). An structural T1 image was also acquired for
anatomical reference.

B. Preprocessing
fMRI data was processed using SPM81. Preprocessing

includes: realignment, coregistration of functional onto struc-
tural data, segmentation of structural data, normalization into
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Fig. 1. Functional network connectivity (FNC) pipeline.

MNI space and spatial smoothing with a Gaussian kernel of
8mm. Large head motions were corrected using ArtRepair2.

C. FNC method

The proposed FNC approach is illustrated in Figure 1. In
particular:

1) Spatial Independent Component Analysis: The first
step for the RSN identification was the fMRI signal de-
composition into sources of neuronal/physiological origin.
For this task, we used ICA, which aims to decompose the
signal into a set of statistically independent components
(ICs) of brain activity. Because in the fMRI data the spatial
dimension is much greater than temporal one, we used spatial
ICA (sICA), which decompose the signal into maximally
independent spatial maps [12]. In sICA each spatial map
(source) have an associated time course, which corresponds

2http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.htm

to the common dynamic exhibit by this component. These
RSN time courses were subsequently used for all the FNC
computations. For the ICA decomposition we used 30
components and the infomax algorithm as implemented in
GroupICA toolbox3.

2) RSNs Identification: After the ICA decomposition,
the different RSNs were identified at individual level. The
common approach for this task is the group level identifi-
cation. In this method, the fMRI data of whole population
is concatenated along the temporal dimension. Later, sICA
is applied to identify the sources of brain activity at the
group level. Following, each RSN is manually identified [6].
Finally, individual time courses are extracted for each RSN
by applying a dual regression (back-reconstruction) onto
the original subject data [6]. This approach is based on a
homogeneity assumption of the fMRI dynamic across the
whole population. Nevertheless, in severely affected brains,
this condition may be not valid [2].

In this work, we used an alternative approach that aims
identifying each RSN directly from the single subject sICA
decomposition. In particular, we ran a single subject sICA,
and then, the set of ICs that maximize the similarity with
a set of RSN templates (figure 1) were selected [2]. This
approach has been proved to be robust in non-homogenous
populations, as the herein studied, and can be used directly
for individual assessment of subjects in clinical applications.
After the RSN spatial map identification, a machine learning
based labeling method was applied to discriminate between
IC of “neuronal”or “artifactual”origin. In particular, a binary
classification method based on support vector machines and
an spatio-temporal feature vector for description each IC was
used [2].

3) Time series interaction measurement: For the compu-
tation of the RSN time series interaction, we propose to use
an alternative measure of interaction the DC [10], which
accounts non-linear dependencies between random variables
in arbitrary dimensions between them.

Distance Correlation. DC aims to measure dependencies
between two random variables X and Y with finite moments
in arbitrary dimension, not necessarily of equal dimen-
sions [10]. For defining DC, we started with an observed
random sample (X,Y ) = {(Xk, Yk)|k = 1, 2, . . . , n} of the
joint distribution of random vectors X in Rp and Y in Rq .
Using these samples a transformed distance matrix A can be
defined as follows:

akl = ‖Xk −Xl‖ , āk· =
1

n

n∑
l=1

akl, ā·l =
1

n

n∑
k=1

akl,

ā·· =
1

n2

n∑
k,l=1

akl, Akl = akl − āk· − ā·l + ā··

k, l = 1, 2, . . . , n. Similarly, B is defined to characterize
distances between samples for Y . Following, the empirical
distance is defined by V 2

n (X,Y ) = 1
n2

∑n
k,l=1 AklBkl.

3http://icatb.sourceforge.net/
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Finally, the empirical DC corresponds to the square root of

Rn(X,Y ) =

{
V 2
n (X,Y )√

V 2
n (X)V 2

n (Y )
V 2
n (X)V 2

n (Y ) > 0

0 V 2
n (X)V 2

n (Y ) = 0

where V 2
n (X) = V 2

n (X,X). Note that A and B can
be computed independently of p and q, and both contain
information about between sample elements distances in X
and Y . V 2

n (X,Y ) is a measure of the distance between the
probability distribution of the joint distribution and the prod-
uct of the marginal distributions, i.e., V 2

n (X,Y ) quantifies
‖fX,Y − fXfY ‖, with fX and fY the characteristic function
of X and Y , respectively, and fX,Y the joint characteristic
function [10]. In contrast to PC, V 2

n (X,Y ) vanish if and
only if X and Y are independent variables [10]. The DC
corresponds to a normalized version of V 2

n (X,Y ), which
takes values between 0 and 1, with zero corresponding
to statistical independence between X and Y , and 1 total
dependency.

Lagged Distance correlation. For the FNC computations
we assumed that two RSN time series X and Y provide
the n observations of the joint distribution characteristic of
the RSN temporal dynamics. Prior to the DC computations,
the RSN time courses were filtered thought a bandpass
Butterworth filter with cut-off frequencies set at 0.05 Hz and
0.1 Hz. This frequency range was previously used in other
studies [2]. Similar to Jafry et al [6], we used a maximum
lagged approach. For this, we defined the lagged DC (LDC)
as

R∆
n (X,Y ) = Rn(X,Y ∆)

where Y ∆ is the time course circularly shifted ∆ temporal
units. We varied ∆ between +6s and −6s in TR units
(2 s) [6]. The maximal DC value for the 7 shifts was
defined as the interaction measure between the two RSN
time courses. This maximal lagged DC was assessed be-
tween all pairwise valid combinations (both RSNs labeled as
“neuronal”) where the number of combinations of 10 RSNs,
taken 2 at a time results in 10!/(2!(10− 2)!) = 45 possible
combinations.

D. Group Analysis

For the group analysis the maximal LDC and the maximal
lagged PC were calculated for all the subjects. Following,
valid interaction quantities (i.e., between RSNs labeled as
“neuronal”) were averaged for each group (healthy controls,
MCS and VS/UWS). A Student’s t-test was used to assess
significant values of interaction at the group level (p < 0.05).
Differences between VS/UWS and MCS, which corresponds
to one of the most clinically relevant discrimination problems
in DOC domain, were assessed by using a two sample t-
test (p<0.01), these computations were Bonferroni corrected
for multiple comparisons (n = 45 possible pairs). Cohen’s
d effect sizes for DC and PC were computed to measure
the capacity of discrimination. Reproducibility for both de-
pendency measures was evaluated by computing an F-test
(p < 0.05) to compare the variance of the maximal lagged

Fig. 2. Individual subject FNC analysis in two subjects. The line tickness
corresponds to the connectivity strength.

Fig. 3. Auditory and the visual medial time course in a healthy control.

PC and LDC. To have comparable values maximal LDC was
normalized to the range 0 and 1.

III. RESULTS

Figure 2 shows the individual connectivity results for two
measures of interaction (maximal LDC - top and maximal
lagged PC - bottom) for two subjects: healthy control (left)
and VS/UWS patient (right). As observed, DC was able to
capture dependencies that were not originally captured by
PC.

Figure 3 shows the corresponding lagged time courses
the RSNs auditory and visual medial network time series
extracted from a healthy control. In this case, non-linear
dependencies were poorly captured by the PC (0.005) in
comparison to DC (0.42).

Figure 4 shows the connectivity at the group level for the
two measurements (DC and PC) in three groups: healthy
controls (top), MCS (middle) and VS (bottom). A recon-
figuration of the connectivity was observed in altered states
of consciousness (VS/UWS and MCS) when compared to
control subjects. In general, DC was able to capture more
relationships among RSNs for the three groups. Significant
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Fig. 4. Functional connectivity group results. The line tickness corresponds
to the connectivity strength.

differences between VS/UWS and MCS patients were found
for ECL - ECR and visual medial - salience connections
(p < 0.05, Bonferroni corrected), for both measurements
DC and PC. In both connections the effect sizes were large.
However, DC resulted in a higher Cohen’s d values: d = 5.33
(DC) compared to d = 4.45 (PC) for ECL - ECR, and
d = 3.45 (DC) compared to d = 3.42 (PC) for the visual
medial - salience. Results indicate that there is no significant
differences in the variances of both measurements (DC and
PC) indicating similar levels stability.

IV. CONCLUSION

In this work, we proposed a new functional network
connectivity (FNC) approach for fMRI resting state brain
activity. The strategy is based on an multiple RSN identifi-
cation approach, and the lagged distance correlation, a novel
measure that aims to capture non-linear relationships be-
tween time series. We demonstrated that the novel approach
improves the capacity of characterizations of functional
connectivity in subjects with severe brain damage.
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