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Abstract— Electroencephalographic (EEG) data give a direct
non-invasive measurement of neural brain activity. Neverthe-
less, the common assumption about EEG stationarity (time-
invariant process) is a strong limitation for understanding real
behavior of underlying neural networks. Here, we propose an
approach for finding networks of brain regions connected by
functional associations (functional connectivity) that vary along
the time. To this end, we compute a set of a priori spatial
dictionaries that represent brain areas with similar temporal
stochastic dynamics, and then, we model relationship between
areas as a time-varying process. We test our approach in both
simulated and real EEG data where results show that inherent
interpretability provided by the time-varying process can be
useful to describe underlying neural networks.

I. Introduction

Nowadays, importance of measuring connectivity between
spatially separate, but functionally related brain areas has
become of key interest in the study of human neural func-
tions. Although most related works are based on the analysis
of functional Magnetic Resonance Imaging techniques [1],
some studies have shown that higher temporal resolution,
provided by EEG data, allows exploring dynamics and
adaptability of different cognitive processes [2], [3]. Thus,
the use of EEG-based neuroimaging to identify active brain
areas corresponding to resting state or responses to certain
stimuli has recently received major attention. Specifically,
there is a change from focusing merely on reconstructing
brain activity (also known as the EEG inverse problem)
towards modeling spatio-temporal dynamics of activation
patterns, termed functional connectivity [4].

Functional connectivity usually comprises two stages:
Firstly, the EEG signals are mapped into the source space
using an inverse method; secondly, connectivity analysis is
performed using predefined regions of interest [5]. About
the former stage, provided that brain source reconstruction
is a heavily ill-posed problem, its solution implies assump-
tion about some prior information. Most of the state-of-art
methods make physiologically meaningful assumptions to
improve reconstruction accuracy. One of the physiologically
fostered assumptions typically made in the EEG inverse
problem solution is that the brain activity can be represented
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through a small/sparse set of spatial basis functions (termed
spatial blobs or patches), that is, the constrained solution is
a linear combination of some predefined spatial patches.

The following patch-based approaches are the most repre-
sentative: Multiple Sparse Priors (MSP) [6], and Sparse Basis
Field Expansion (S-FLEX) [7]. Nevertheless, assessment
of brain activity reconstruction, and in turn, evaluation of
connectivity networks in most of the cases is limited by the
implicit assumption about spatial and temporal stationarity
throughout the entire measurement interval [8]. This assump-
tion is far from being totally realistic in many practical
scenarios, where brain activity has strong non-stationary
spatio-temporal dynamics [9], [8].

This work assumes that the brain activity can be repre-
sented by a set of small spatial basis functions or patches
enforcing compact and sparse support. Besides, to get a phys-
iologically plausible spatial dictionary, we introduce smooth
basis, namely, Gaussian functions. Introduced smooth spatial
patches also relax the assumption about EEG data non-
stationarity by using time-varying prior knowledge that is
introduced as a time varying a-priori covariance matrix.
Generally, our method comprises of the following two stages:
i) Computation of a locally smooth spatial dictionary where
each element represents brain areas potentially generating
a set of pre-identified dynamics, ii) Linear combination of
the spatial dictionary elements, which is modeled as a time-
varying process. Obtained results on simulated and real EEG
databases show that interpretability provided by the time-
varying process can be successfully used to encode and
describe underlying neural networks.

II. Methods

A. Brain source estimation based on spatial dictionaries

Aiming to estimate brain activity, we consider the fol-
lowing distributed solution, Y=LJ+Ξ, where Y⊂RNc ×Nt is
the EEG data measured by Nc sensors at Nt time samples,
J⊂R3Nd ×Nt is the amplitude of the Nd current dipoles in
each three-dimensional dimension distributed through cor-
tical surface, and L⊂RNc ×3Nd , termed lead field matrix, is
the gain matrix representing the relationship between sources
and EEG data. Besides, we assume that the EEG measures
are affected by the zero mean Gaussian noise Ξ⊂RNc ×Nt

having the matrix covariance QΞ=INc
, where INc

⊂RNc ×Nc

is the identity matrix.
Moreover, brain activity may be represented through a

linear combination of spatial basis fields (or Sparse Basis
Field Expansions, S-FLEX), that is, the current amplitude
takes the following form J=ΦsCs , where each column of

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 2789



the matrix Φs⊂R
3Nd ×Ns corresponds to a single cortical

patch, while the matrix Cs⊂R
Ns ×Nt holds all weighting

coefficients, which are assumed to have a Laplacian prior
distribution. Consequently, to obtain spatially sparse solu-
tions, the following objective function is derived:

arg min
Cs

{

| |Y − LΦsCs | |
2
F + λ | |Cs | |1,2

}

(1)

where notations | | · | |F and | | · | |1,2 stand for the Frobenius
and L1,2-norms. The latter one is the L1-norm grouping
each vector dipole component under the L2-norm to avoid
orientation bias. Further explanation of S-FLEX can be
addressed in [7]1.1.

B. Time-varying functional connectivity analysis

In the following, we describe the steps for estimating the
time-varying Functional Connectivity Matrix (FC-TVAR).

1) Time and spatial dynamics computation: In the be-
ginning, Nq main temporal components are extracted from
the original input data by using the first Nq eigenvectors
of the temporal covariance matrix obtained from its eigen-
decomposition, that is, VSV⊤=Y⊤Y , where V⊂RNt ×Nt is
a matrix where each column corresponds to the right eigen-
vectors (temporal components) of Y , and S⊂RNt ×Nt is the
matrix holding in the main diagonal its eigenvalues.

Afterward, the introduced compact spatial dictionary, Φ∗
s ,

is selected from the original set Φs by estimating activity
generated by the above temporal decomposition explained.
In particular, each element of the reduced spatial set is
calculated using the S-FLEX method as follows:

{Φ∗
s (·, i) = S − FLEX

(

Φs ,YV(·,i)

)

: ∀i ∈ Nq }

where V(·,i) holds the i-th main temporal EEG data com-
ponent and S − FLEX

(

Φs ,YV(·,i)

)

is the brain activity es-
timation obtained by using the spatial dictionary Φs and
the projected data YV(·,i) . However, each ith element must
hold just one well defined spatially coherent generator. So,
to avoid elements in Φ∗

s holding several cortical patches, a
k-means clustering algorithm is applied to determine each
generator correctly as independent elements of the new
dictionary. As a result, we obtain a reduced spatial dictionary
of size Nr ≥Nq .

2) Computation of time-varying hyperparameters: Given
the i-th element of Φ∗

s , its corresponding hyperparameter at
time instant k, noted as hk

i
, is recursively calculated using the

following EEG covariance, Qk⊂R3Nd ×3Nd , estimated within
the fixed time window centered at time instant k:

Qk =

Ns
∑

i=1

hk
i diag(Φ∗

s (·, i)). (2)

Besides, a random walk model is considered to estimate
all characterizing temporal hyperparameter dynamics within
the following state space framework:

hk
i =hk−1

i + µki , ∀i ∈ Nr (3a)

vec
(

cov
(

Y k
))

=vec
(

LQkLT
)

+γk (3b)

where vec (·) is the argument vectorization, cov
(

Y k
)

is the
covariance estimated in the window Y k , centered at time
instant k, both µk and γk⊂RN 2

c ×1 are measures of noise that
are assumed to be normally distributed with scaled identity
covariance matrices.

To estimate the introduced hidden states in Eq. (3a)
and (3b), the random walk model can be rewritten as to apply
the following relationship between the Kronecker product
(represented as ⊗) and the vec (·) operator:

hk =hk−1 + µk (4a)

vec
(

cov
(

Y k
))

=L ⊗ Lvec
(

Qk
)

+γk (4b)

Under formulation of Eqs. (4a) and (4b), the hidden
states hk are estimated using the standard Kalman filtering
method.Lastly, to compute the FC-TVAR, we first map the
time-varying covariance matrix Qk into a set of Nb < Nk

specific brain areas, hereby Q̂k ∈ RNb ×Nb (see description of
Fig. 1). After, we calculate the FC-TVAR at the time instant
k (Fk ) from the mapped time-varying covariance matrix as:

Fk =
ˆ

Qk⊤Q̂k , ,∀k ∈= 1, . . . ,T

where T⊂R+ is the time interval analysis.

III. Simulated Data

Generally speaking, to objectively assess the tested brain
activity reconstruction algorithms and, by extension, EEG-
based connectivity analyses, simulated data is typically used.
Bearing this in mind, we simulate two active neural sources
placed in the supramarginal and rostral middle-frontal gyri.
To this end, The time series simulating active sources are two
Morlet wavelets with the central frequency at 10 Hz and time
shift of 0.5 s and 1 s, respectively. Besides, the head model
used to generate the lead field matrix comprises 4000 dipoles
placed only on the tessellated cortex surface, as carried out
in [6], [7].
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Fig. 1. Simulated brain activity and corresponding EEG (a). spatial
dictionary Elements and corresponding time-varying hyperparameters (b).
Instantaneous Covariance Matrix at three different time instants (c). The
labels stand for: left hemisphere; 1:Inferior Parietal, lateral occipital and
Temporal. 2: Post-central and supra-marginal. 3: Pre-central and caudal
middle frontal. 4: Rostral middle-frontal. 5: Superior frontal. 6: Superior
parietal. From 7 to 12, the same labels are for the right hemisphere.
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Fig. 1 shows both the simulated activity and its obtained
results where a dipole set with unknown values of amplitude
and orientation is considered, yielding a total of 12000
unknowns per time instant: 3 variables per dipole represent-
ing activity strength in each one of the three-dimensional
directions. Also, the simulated brain activity is measured by
59 electrodes placed according to the international 10-20
EEG system.

The simulated EEG assuming a SNR value of 12 dB is also
considered. Accomplished spatial localization of the active
dipole corresponding to the supramarginal gyrus has a small
localization error. Specifically, the algorithm reconstructed
this activity in the superior temporal gyrus. Nevertheless,
all dynamics captured by the hyperparameters correspond to
the simulated activity. Consequently, the proposed algorithm
identified the non-stationary spatial dynamics of the EEG
recording. Moreover, the instantaneous covariance matrices
shown in Fig. 1.(c) encode spatial relationship among the
examined brain areas. Here, we also see that the joint
dynamics and transition states are correctly modeled.

(a) SNR=5 dB

(b) SNR=0 dB

Fig. 2. Influence of noise on hyperparameter estimates of simulated
EEG segments. The highest the influence - the smother the time-varying
hyperparameter estimation.

Furthermore, to assess performance of the proposed
method with respect to Signal-To-Noise Ratio, as seen in
Fig. 2, we performed two additional experiments for a
simulated EEG with an SNR of 5 dB and 0 dB, respectively.
It can be seen in Fig. 2(a) that, unlike simulation with an
SNR of 12 dB, an additional hyperparameter (weighting an
additional element of the spatial dictionary) is generated for
the case of 5 dB value. This fact suggests that for lower SNR
ratios, the method generates additional dictionary elements,
which should be related to noise. As seen in Fig. 2(b) for
0 dB, interpretability of the method is completely lost, i.e., a
lot of spurious hyperparameters are necessary to explain the
principal components identified by the SVD.

IV. Real Data

Real EEG data used to validate the proposed algorithm is
a standard auditory odd-ball experiment presented in [10].
We select the non target responses of subject #6 from the
available dataset. The stimuli lasting 100 ms are separated
from each other in 225 ms. Approximately, 450 trials for
non-target stimuli were available. EEG signals were recorded
monopolarly using 63 wet electrodes placed at those sym-
metrical positions according to the international 10-20 EEG
system. Channels were referenced to the nose. The hardware
sampling rate was 1 kHz and the signal was further sub-
sampled at 200 Hz. As the preprocessing stage, data were
band-pass filtered between 0.4 and 25 Hz.

Fig. 3 shows the EEG response recording to non-target
auditory stimuli and the hyperparameters of the correspond-
ing spatial dictionary. As seen, computed time-varying hy-
perparameters have peaks about every 225 ms that should
be related to the period of the non-target auditory stimuli.
Therefore, we hypothesize that the proposed method can
extract important dynamics of the underlying neural process.

(a) Real EEG segment.

(b) Hyperparameters

Fig. 3. Original EEG segment extracted from the averaged trials of the
studied subject (a). Exemplary of Hyperparameters corresponding to the
dictionary shown in Fig. 4.

Also, Figs. 4(a) and 4(b) show that the proposed method
can localize activity around the pre-central gyri; an area that
is close to the primary auditory cortex, i.e., the area that is
expected to be active. Furthermore, Figs. 4(c) and 4(d) show
that pairwise spatio-temporal relationship between the two
auditory cortices (left and right) is successfully encoded; it
can be seen a significant correlation between some neural
sources located on the pre-central and post-central gyri of
both hemispheres, respectively.

Similarly as in the experiments carried out for simulated
data, we add noise to the considered real EEG segment
in order to study how the method behaves under realistic
noisy conditions. Specifically, we add Gaussian white noise
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(a) (b)

(c) (d)

Fig. 4. Obtained results in the real EEG segment: (a)-(b) Reduced spatial
dictionaries and (c)-(d) Covariance matrix at two different time instants
t = 175ms, and t = 400ms. The labels are the same as in Fig. 1.

to get a 7 dB-SNR value with respect to the original segment.
Obtained results can be seen in Fig. 5 showing the estimated
in this case hyperparameters of the spatial dictionary. Once
again as in real data, the hyperparameters also are able
to capture temporal dynamics of the underlying process
(at least, the periodic peaks every 225 ms). Nevertheless,
processing of the noisy signal implies that the spatial dic-
tionary has several spurious elements, thus jeopardizing the
interpretability of the proposed method.

Fig. 5. Influence of noise on time-varying hyperparameters estimates of
realistic EEG segments.

V. Discussion and Concluding Remarks

In the present work, we describe a novel solution for the
EEG inverse problem and its use in functional connectivity
analysis. The presented approach allows to relax widely-
used stationarity assumption in several state-of-art inverse
solutions. Nonstationarity of EEG signals is clearly assumed
by computing a time varying covariance matrix of the brain
activity, based on the data covariance. Consequently, rela-
tionship among complex dynamics of different brain areas
can be identified.

Furthermore, to ensure that the solution has a physio-
logically significant distribution, the proposed time varying
covariance matrix is assumed to be composed of a set

of well-defined spatial basis functions as some state of
art methods do (S-FLEX or MSP methods). Each one of
the introduced spatial basis functions extracts independent
dynamics, in this case, orthogonal temporal components
given by the SVD. However, the use of SVD to identify
dynamics of EEG recordings may be an over-simplifying
approach: firstly, an orthogonal constraint in the components
may not suffice to describe potentially complex components
of the recording. Secondly, using SVD makes the proposed
method highly sensitive to noisy signals, as typically seen
in EEG, because the principal components identified to
build the physiologically meaningful spatial dictionary would
correspond to noise and not to the dynamics of interest. This
issue may be fixed by time-frequency based priors [11].

On the other hand, the presented method provides inter-
pretability that is usable in the context of functional brain
connectivity analysis in real EEG data. In this regard, given
that the time-varying covariance matrix is computed using
windowed data, its analysis at specific time instants supply
information about the neural sources or brain areas that
interact with each other, and also allows to examine the
temporal dynamics of such interactions. Specifically, we test
the proposed method to map the brain activity response to
non-target auditory stimuli. Although, within this framework
it is difficult to arise strong conclusions about statistical
dependencies among anatomically significant brain areas,
the relationship between activation of left and right auditory
cortex in the presented experiment is successfully identified.
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