
  

 

Abstract— One of the main limitations commonly 

encountered when dealing with the estimation of brain 

connectivity is the difficulty to perform a statistical assessment 

of significant changes in brain networks at a single-subject 

level. This is mainly due to the lack of information about the 

distribution of the connectivity estimators at different 

conditions. While group analysis is commonly adopted to 

perform a statistical comparison between conditions, it may 

impose major limitations when dealing with the heterogeneity 

expressed by a given clinical condition in patients. This holds 

true particularly for stroke when seeking for quantitative 

measurements of the efficacy of any rehabilitative intervention 

promoting recovery of function. The need is then evident of an 

assessment which may account for individual pathological 

network configuration associated with different level of 

patients' response to treatment; such network configuration is 

highly related to the effect that a given brain lesion has on 

neural networks. In this study we propose a resampling-based 

approach to the assessment of statistically significant changes in 

cortical connectivity networks at a single subject level. First, we 

provide the results of a simulation study testing the 

performances of the proposed approach under different 

conditions. Then, to show the sensitivity of the method, we 

describe its application to electroencephalographic (EEG) data 

recorded from two post-stroke patients who showed different 

clinical recovery after a rehabilitative intervention. 

I. INTRODUCTION 

Brain connectivity studies play a predominant role in the 

comprehension of neuroplasticity which occurs after a brain 

lesion and during the recovery of  impaired functions (e.g. as 

a consequence of a treatment such as specific stimulations, 

rehabilitation or training based on motor/cognitive tasks [1]). 

From EEG signals recorded on the scalp, effective 

connectivity between different brain regions can be 

estimated by means of Partial Directed Coherence (PDC) 

[2]. The networks properties can be described by 

quantifiable indices, like those derived from classical graph 

theory [3], which were widely used in different applications 

[4,5], as well as by indices defined ad hoc to investigate 
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specific physiological and topological properties of a brain 

network [6]. This approach is based on the use of advanced 

techniques for signals processing, which use all the 

information available from data to build a unique model, 

thus not providing a distribution for a single experimental 

condition: this prevents from performing a statistical 

comparison between two different conditions at the single 

subject level. 

Group analysis is a powerful tool to overcome such 

limitation and to obtain generalizable results. However, this 

approach may be hindered by the difficulty to get 

homogeneous groups, especially in the case of patients, that 

usually present very heterogeneous characteristics. 

Moreover, assessing brain organization changes in a specific 

patient (for instance, as a consequence of a treatment) is of 

particular interest for clinical applications. 

In this study, we propose an approach based on 

resampling procedures, applied to multi-trial EEG data in 

order to obtain different datasets representing a distribution 

of observations for each condition. The working hypothesis 

is that connectivity patterns computed on such datasets can 

provide a distribution of patterns allowing to statistically 

compare brain networks, or their related connectivity indices,  

at different conditions, for a single subject. Two resampling 

approaches are here evaluated, based on Jackknife and 

bootstrap procedures, respectively [7]. The variability 

introduced in the connectivity estimates by the two 

approaches was tested by means of a simulation study, 

providing results that were subjected to an analysis of 

variance (ANOVA) to evaluate the effects of different 

factors adopted during the procedure. Then, we applied the 

procedure to eyes-closed resting state EEG data recorded on 

subacute stroke patients preceding and following a 

rehabilitative intervention. In particular, to show the 

sensitivity of the proposed approach, we considered two 

patients who showed different clinical recovery after the 

rehabilitation and we linked the significant variations in 

brain connectivity to the clinical outcome of the intervention. 

II. METHODS  

A. Partial Directed Coherence 

The PDC [2] is a full multivariate spectral measure, used 

to determine the directed influences between any given pair 

of signals in a multivariate data set. As a frequency-domain 

version of Granger causality [8], PDC reveals the existence, 

the direction and the strength of a functional relationship 
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between any given pair of signals in a multivariate data set. It 

is possible to define PDC as: 
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where Λ(f) is a matrix containing the coefficients of 

associated Multivariate Autoregressive (MVAR) model. 

In this study we used the squared formulation of PDC 

due to its higher accuracy and stability [9]. The patterns 

significance was assessed by means of an asymptotic statistic 

method [10]. 

B. Resampling implementation 

To achieve a distribution of connectivity estimations 

during a single experimental condition, in this study we 

defined and implemented two methods to perform 

resampling on EEG data. Given an EEG dataset, 

characterized by a certain number of trials , we explored 

two approaches: the Jackknife and the bootstrap [7]. Each 

method can be applied for K iterations, allowing to obtain K 

EEG dataset to be subjected to the connectivity estimation. 

The Jackknife method performs a leave-N-out approach 

to trials, where N is the percentage of trials to be randomly 

excluded from the estimation: in this way, each k (k=1,…,K) 

dataset is characterized by a number of trials NE which is 

smaller than the whole initial dataset. 

TTE
NNNN                 (2) 

The second approach is based on data resampling: it 

keeps constant the number of trials through the exclusion of 

some of them and the repetition of others, as shown in 

equation 3:  

TTE
NtrNNN              (3) 

where  is the number of trials of each k (k=1,…,K) 

dataset to be subjected to the PDC estimation, N is the 

percentage of trials to be randomly excluded and t is the 

number of trials to be repeated r times (r and t are not 

independent, as their product must be equal to N).  

C. Simulation study 

In order to test the distribution of connectivity patterns 

obtained by the proposed approach, we performed a 

simulation study, in which, starting from a set of EEG data, 

obtained from a resting-state recording in a healthy subject, 

we applied both approaches, systematically varying the 

following factors:  

- number of replications of the resampling procedure 

(factor K; four levels: 30, 100, 250, 500); 

- percentage of excluded trials in the Jackknife procedure 

(factor N; three levels: 1%, 5%, 10%); 

-  percentage of excluded trials (factor N; 5 levels: 2%, 

5%, 10%, 20%, 50%) and number of repetitions of the  

t trials (factor r; 3 levels: 1, 2, 4) in the bootstrap 

procedure. 

To evaluate the effect of such factors on the variability of 

the obtained connectivity distribution, we computed the 

Frobenius norm of standard deviation, along the resampling 

replications, of connectivity estimation. In equation 4, the 

formulation of Frobenius norm of the N x N matrix SD of 

standard deviation (N is the number of channels) is shown: 
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where aij is the entry ij of matrix SD. This dependent 

variable was subjected to two ANOVAs for repeated 

measures, with 2 within factors (K, N) and 3 within factors 

(K, N, r) for Jackknife and bootstrap, respectively. 

D. Application to real data 

We tested the proposed approach on EEG data acquired 

from two subacute stroke patients enrolled in a rehabilitative 

treatment protocol to enhance motor recovery of the upper 

limb (males, aged 58 and 62, both suffered a left hemispheric 

stroke 2 months prior to enrollment). Both patients 

underwent a Brain Computer Interface (BCI)–assisted upper 

limb Motor Imagery (MI) training (12 sessions, total 

duration of the treatment 1 month).  

To evaluate the sensitivity of the proposed approach, we 

selected two patients who showed a different clinical 

recovery, based on the upper limb section of the Fugl-Meyer 

Assessment (FMA) scale. FMA is a stroke-specific, 

performance-based impairment index designed to assess 

motor functioning in patients with post-stroke hemiplegia 

[11]. A Minimal Clinically Important Difference (MCID) for 

the upper limb FMA scale was set to 7 points [12]. With 

respect to this definition, one of the patients reached the 

MCID after the training (14 points), while the other did not 

(4 points).  

Two minutes of eyes closed resting state EEG (standard 

10-20 montage, 20 electrodes) were acquired in two 

sessions: one preceding (PRE) and the other following 

(POST) the intervention. Preprocessing included down-

sampling at 100 Hz, band pass filtering (1-45 Hz), artifact 

rejection and 1s-epochs segmentation: with this procedure 

we obtained for each patient and each condition, an EEG 

dataset consisting of approximately 100 artifact-free trials. 

The resampling method was applied setting parameters as 

follows:  

- Bootstrap replications K = 20; 

- number of trials excluded N = 50%;  

- repetition of trials r = 4.  

Brain connectivity achieved between all possible pairs 

among the 19 electrodes for each frequency in the range 

[1:45] Hz were averaged within 5 frequency bands, defined 

according to Individual Alpha Frequency [13]: theta [IAF-

6;IAF-2], alpha [IAF-2;IAF+2], beta1 [IAF+2;IAF+11], 

beta2 [IAF-11;IAF+20] and gamma [IAF+20;IAF+35]. 

To describe and quantify a networks property known to 
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be related to stroke effects we computed the Inter-

Hemispheric Connectivity (IHC) from PDC patterns 

estimated in the conditions PRE- and POST-training, for 

each frequency band. IHC is defined as the mean value of the 

weights of all the inter-hemispheric connections (IHC 

weight): 

IHC
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1                      (5) 

were NIHC is the number of estimated inter-hemispheric 

connections and wi is the weight of ith IHC. We performed 

an ANOVA with IHC weight as dependent variable, between 

factor: subject, within factor: PRE- vs POST-training. 

 

Figure 1.  ANOVA performed on the norm of standard deviation of the 
connectivity distribution. a) plot of means with respect to the factor N 
(number of trials excluded) for Jackknife approach; b) plot of means with 
respect to the factors N (number of trials excluded) and r (number of 
repetitions of t trials) for bootstrap approach. 

III. RESULTS 

A. Simulation study 

Results of the ANOVAs performed on the norm of 

standard deviation revealed that the choice of the factor K 

(resampling replications number), in the proposed range, has 

no significant effect on any of the methods, whereas the 

parameters N and r associated to the two approaches 

significantly influence the variability of the distributions. 

Fig. 1.a shows how the standard deviation increases 

significantly with the number of excluded trials (N) in 

Jackknife approach. The norm of standard deviations 

obtained is in the order of 10
-2

. Similarly, in the case of 

bootstrap (Fig. 1.b) the norm significantly increases with 

parameter N but also with parameter r. In this case, standard 

deviation range is wider (10
-2

 ÷ 10
-1

), thus allowing to select 

parameters in order to be more conservative, i.e. to increase 

variability and to prevent false positives which may result 

from a distribution with a low standard deviation. 

B.  Application to real data 

Results of ANOVA performed on IHC weight as 

dependent variable are showed in Figure 2 for Alpha and 

Beta1 bands.  Post-hoc analysis revealed a significant 

difference in Alpha band (Fig. 2.a) between the PRE and 

POST conditions for the patient who reached the MCID, 

indicating a significant increase of inter-hemispheric 

connectivity after the training with respect to the PRE 

condition. No significant differences were revealed by the 

test for the patient who did not reach the MCID. In Beta1 

(Fig. 2.b) both patients showed a significant increase of the 

IHC weight, with a significantly higher value for the patient 

who achieved a good clinical recovery.  

IV. DISCUSSION 

The two methods here evaluated for resampling the EEG 

data have proved to be able to produce a  distribution of 

connectivity in a single condition and for a single subject, 

allowing statistical analysis. As might be expected, the 

standard deviation of such distribution increases with the 

number of excluded trials, for both approaches. However, 

this affects differently the two methods. In fact, for the 

Jackknife approach, the increase of standard deviation is 

related to a loss of accuracy, due to the reduction of the 

amount of data used for the estimation, which is more and 

more considerable as N increases. The bootstrap approach, 

on the contrary, keeps the data amount fixed, and the 

increase of N, while improving variability, is not expected to 

significantly compromise the quality of the estimation. 

Furthermore, Jackknife, while not allowing to increase N to 

the same extent allowed by bootstrap (to avoid reducing the 

dataset under the level needed for the connectivity 

estimation) can lead to a lower variability of the data with 

respect to the bootstrap, which may enhance the differences 

when contrasting different conditions and result in false 

positives. For these reasons, the bootstrap method was 

chosen to be applied to real data, and we set the parameters 

to values providing higher standard deviations, to ensure a 

conservative approach.  
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Figure 2. ANOVA performed with IHC weight as dependent variable, 

between factor: subject (patient 1 reached the MCID after the training, 

while patient 2 did not), within factor: PRE- vs POST-training. a) Alpha 

band; b) Beta band. The symbol (*) indicates a significant difference 

resulting from post-hoc tests (p<0.05). 

 

The application to patients’ data had the aim to show the 

application of the proposed methodology at a single subject 

level. We selected two patients that showed a different 

clinical recovery after a BCI-assisted MI rehabilitative 

training, thus providing a good test for the sensitivity of the 

method proposed to changes resulting in the brain networks 

organization after a rehabilitative intervention. There are 

evidences of the reduction of inter-hemispheric connectivity 

as a consequence of stroke, which may be detected even at 

resting condition [14]. For this reason, we adopted the IHC 

weight as a descriptor of the network properties to be 

investigated. Results suggested a significant increase of 

inter-hemispheric connectivity at rest, in Alpha band, for the 

patient with a good clinical recovery. This is in line with 

previous studies indicating significant resting state Alpha 

rhythm connectivity properties in post stroke patients [15]. 

Focusing on the rhythm specifically trained by the BCI-MI 

intervention (i.e. the lower Beta), both patients showed an 

increase of inter-hemispheric connections, indicating an  

effect of the training in both cases. However, this increase 

was significantly higher for the patient with a better clinical 

recovery, which may suggest that the index is able to 

quantify the effects of the intervention at the level of cortical 

organization, in agreement with the clinical outcome.  

V. CONCLUSION 

The results of this study suggest that a resampling 

approach aiming at building a distribution for each 

experimental condition may be a useful tool to overcome the 

limitations in the single-subject connectivity evaluation. The 

application to resting state EEG data in two post stroke 

patients pre- and post- rehabilitative intervention showed that 

the proposed method is sensitive to changes related to the 

clinical outcome, and suggests that it might be adopted, in 

support of the clinical scales, for the evaluation of the 

efficacy of a treatment. 
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