
  

  

Abstract— The recently developed extended belief rule-based 
inference methodology (RIMER+) recognizes the need of 
modeling different types of information and uncertainty that 
usually coexist in real environments. A home setting with 
sensors located in different rooms and on different appliances 
can be considered as a particularly relevant example of such an 
environment, which brings a range of challenges for sensor-
based activity recognition. 

Although RIMER+ has been designed as a generic decision 
model that could be applied in a wide range of situations, this 
paper discusses how this methodology can be adapted to 
recognize human activities using binary sensors within smart 
environments. The evaluation of RIMER+ against other state-
of-the-art classifiers in terms of accuracy, efficiency and 
applicability was found to be significantly relevant, specially in 
situations of input data incompleteness, and it demonstrates the 
potential of this methodology and underpins the basis to 
develop further research on the topic. 

I. INTRODUCTION 

Automatic recognition of human activities is a promising 
field that would aid developing solutions for applications in 
different domains such as healthcare, context-aware 
computing, security or ambient-assist living, to name but a 
few [1, 2]. Recent advances in several aspects of sensing 
technologies, such as miniaturization or decreasing costs, 
have progressed activity recognition related research 
substantially forward. Nevertheless, despite these advances, 
activity recognition is still regarded as a complex process 
where different types of information, data formats and 
elements of uncertainty are usually involved. 

Traditionally, the methods utilized to approach activity 
recognition problems have been divided into two main 
groups: Knowledge-Driven Approaches (KDA) and Data-
Driven Approaches (DDA) [2]. While KDAs make use of 
rich domain-specific expert knowledge to model activities, 
DDAs are based on learning from the information retrieved 
by sensors and labeling each activity. One key idea that this 
research considers is that the activities, whether they are 
modeled using a KDA or learnt and labeled using a DDA, 
need to be compiled in some type of Knowledge-Base (KB) 
in order to recognize or predict future activities. Depending 
on the methodology utilized, this prediction can be performed 
by means of induction, deduction or some other method that 
aggregates or infers the knowledge stored in the KB. 
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In order to take advantage of the main benefits provided 
by DDAs and KDAs [2] and to avoid some of their common 
disadvantages, this research utilizes the recently developed 
extended belief rule-based inference methodology (RIMER+) 
[3], which can be regarded as a combination of DDA and 
KDA. RIMER+’s KB is based on Extended Belief Rule-
Bases (E-BRB), which are able to capture (i) sample data and 
expert knowledge in a homogeneous way; (ii) nonlinear and 
causal relationships; and (iii) several types of uncertainty 
related to expert knowledge and data. E-BRBs can be utilized 
to complement real data from sensors with expert knowledge 
in order to provide a more elaborate model of the activity 
recognition problem domain. This can be viewed as a great 
advance, given that one of the main inconveniences of DDA 
methods is their limited capacity to represent expert 
knowledge. The E-BRB can be generated from data using the 
novel rule generation scheme or provided by experts [3]. To 
produce a prediction result based on some input of the 
system, RIMER+ uses the Evidential Reasoning (ER) 
algorithm [4] to infer the information included in its E-BRBs. 

The remainder of this paper is organized as follows: 
Section II briefly outlines the RIMER+ approach; Section III 
discusses how RIMER+ was adapted to specifically work 
with binary sensor data and Section IV details the case study 
and presents the results obtained. Finally, Section V 
concludes this paper. 

II. RIMER+ 

One of the main features of RIMER+ is its E-BRB, which 
extends the KB used in the belief Rule-Base Inference 
Methodology (RIMER) [7], using belief degree distributions 
embedded in the consequent terms of its rules and also in 
each antecedent term. Take for example the following EBR: 

IF Temperature is {(Hot, 0.7),  (Warm, 0.1), (Cold, 
0)} THEN Heating is {(ON, 0.8), (OFF, 0.2)} (1) 

This kind of extended belief rule is generic in the sense 
that it is able to not only capture fuzziness (linguistic terms), 
uncertainty (beliefs), incompleteness (partially known belief 
or ignorance) and nonlinear relationships (IF-THEN rules) in 
an integrated way, however, also provides a flexible way to 
incorporate hybrid input information and an efficient rule 
generation scheme to build E-BRBs directly from sample 
data (refer to [3] for further details).  

E-BRBs also provide the flexibility to incorporate context 
information in the KB. This context information could be 
vague, uncertain and/or incomplete and quantitative or 
qualitative in nature. In addition, they provide the means to 
tune the importance of different rules and antecedents, using 
rule weights (noted as Θk for the kth rule) and antecedent 
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relative weights (noted as δik, for the ith antecedent of the kth 

rule), respectively. Once the E-BRB is generated from 
sample data and complemented with expert knowledge 
related to an environment, it can be used to recognize future 
activities, setting the values of sensors as inputs for the E-
BRB. This recognition method of the RIMER+ approach is 
based on two main processes:  

1) Rule Activation: evaluate which rules need to be 
activated, computing their activation weights (wk) using the 
similarity of their antecedents against the given inputs. 

2) Rule Inference: the ER approach [4] is applied to 
combine the activated rules and generate the final output. 

Given that an E-BRB may be generated from sample 
data, the quality of data might be a big issue to be concerned 
when generating a reliable E-BRB. In this regard, a new 
Dynamic Rule Activation (DRA) algorithm has been 
proposed in [6, 13] as a method to select the most relevant 
information to be aggregated within the RIMER+ decision 
model. This is undertaken by considering that data 
incompleteness and inconsistency may be viewed as paired 
situations, given that the former appears due to lack of 
information while the latter can be considered as an excess of 
heterogeneous information [6]. This upgraded method is 
denoted as R+DRA, and is detailed in Fig. 1.  This approach 
enhances the performance of RIMER+ (without DRA), 
especially in multi-class datasets. For details relating to the 
procedures and algorithms refer to [6]. It is important to note 
that the processes listed in Fig. 1 can be modified depending 
on each particular scenario. In this regard, the following 
Section details how the Individual Matching Degree and Rule 
Activation were upgraded to work with binary sensor data. 

III. ADAPTATION FOR BINARY-SENSOR DATA  

To recognize activities in a home setting, this research 
uses data from sensors that provide two possible values (0 or 
1). Given that RIMER+ provides the flexibility to modify 
the similarity and aggregation functions (to calculate the 
individual matching degree and rule activation weights, as 
depicted in Fig. 1), this study proposes to replace these two 
functions with a popular similarity measure named hamming 
distance [8], particularly designed to work with binary (and 
qualitative) data: 

 

(2) 

where α is the input vector (αi is the input for the ith 

antecedent attribute) and Ak is the antecedent vector for the 
kth rule (where Aik is the ith antecedent of the kth rule). Note 
that in the case studies presented in this research, each αi and 
Aik may only take the values 0 or 1, since the activity 
recognition environment is based on binary sensors. If the 
similarity function H (Eq. (2)) returns zero this means that the 
input vector perfectly matches the antecedents of the kth rule 
(i.e. the current sensor values totally match the description of 
one activity). The higher value H returns, the more dissimilar 
the input vector is to the kth rule. 

 
Fig. 1 The R+DRA decision-making process (from top to bottom). 

In order to allow the decision model to accommodate 
noise in the input data, the rule activation weights (wk) are 
calculated as follows: 

 

(3) 

Eq. (3) models the idea that some noise in the input 
vector is permitted (e.g., some sensors may have some 
technical failure or been deactivated, subsequently returning 
wrong values). Although rules containing a certain amount 
of noise (in 1 or 2 sensors) are not completely discarded, 
their activation weight is substantially lower than if no noise 
is found (H(α, Ak) = 0). For the binary sensor data, the 
proposed H function suits better than the Euclidean distance 
used in [3]. The case studies presented in the following 
Section compare these two options and demonstrate how the 
use of H considerably enhances the results. 

IV. CASE STUDY 

This Section details the tests run to evaluate the 
performance of the method proposed in the previous Section.  
A. Activity Recognition Dataset 

The case study presented in this paper is based on a 
popular activity recognition dataset, presented in [1, 5]. The 
dataset will be used to compare the performance of RIMER+ 
against other popular classifiers. It contains 245 observations 
generated using 14 binary sensors, placed in 14 locations 
within a home setting: microwave, hall-toilet door, hall-
bathroom door, cups’ cupboard, fridge, plates’ cupboard, 
front door, dishwasher, toilet flush, freezer, pans’ cupboard, 
washing machine, groceries’ cupboard and hall-bedroom 
door. Using this information, the 7 activities to be recognized 
were defined as: going to bed, using toilet, preparing 
breakfast, preparing dinner, getting a drink, taking a shower 
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and leaving the house. It is important to note that the 7 
classes are not evenly distributed; hence the dataset is 
unbalanced with just one class (using toilet) being assigned to 
46.5% of the observations while others (like preparing 
dinner) are only represented in 4% of the observations. 

When an E-BRB is built using the described dataset, it 
would have as many extended belief rules as training 
observations. Each one of those rules would have 14 
antecedents (one per sensor) and a consequent, as follows: 

IF Microwave is {(ON, 0),  (OFF, 1)} AND … AND 
Hall-bedroom Door is {(ON, 0),  (OFF, 1)} THEN 
Activity is {(going to bed, 0), (using toilet, 1), …, 
(leaving the house, 0)} 

(4) 

It is important to note that all the attributes were defined 
as a set of qualitative values. The sensors included two 
possible discrete values: 1 and 0, which would translate as 
ON and OFF, respectively. 

The following tests analyze one important aspect: the 
performance of the classifiers in situations of incompleteness 
of input information. To assess this, several sensors will be 
manually deactivated to simulate a situation where they did 
not activate and hence will have their output permanently set 
to zero.   

B. Tests definition 

A series of tests were run to compare the performance of 
RIMER+ (using Euclidean and Hamming - Eq. (2) - 
similarity distances) against other popular classifiers used as 
DDA approaches for activity recognition. Among them, the 
Naïve Bayes classifier (NB) has been considered to retrieve 
promising results despite its simplicity [2, 14, 15], and 
Support Vector Machines (SVMs) also have been recognized 
to work consistently well in sensor-based activity recognition 
[2, 16]. Hence, these two classifiers are included as reference 
methods for comparative purposes in this study. In addition, 
the Nearest Neighbor (NN) [9], and Decision Table (DT) [10] 
classifiers were also included as reference methods. 

To assess their performance in different situations, three 
commonly-used types of tests were run to evaluate the 
classification accuracy of each method: (i) 10-fold Cross-
Validation (CV10); (ii) using 66% of samples for training 
and the remaining for testing (66%T); and (iii) using half of 
samples for training and the other half for testing (50%T). 

Moreover, as previously mentioned, additional series of 
tests were performed posing the situation where a number of 
sensors were faulty for any reason (e.g. low battery, sensor 
failure). In this regard, the tests were emulated for the cases 
where 4, 5 and 6 sensors always provided an output of 0 to 
simulate them being permanently inactive. 

C. Results and Discussion 

For the first series of tests, the accuracy of the selected 
methods was analyzed. The accuracy is measured as the 
percentage of observations correctly predicted over the total 
number of observations. As Table I illustrates, the proposed 
method (RIMER+ enhanced with DRA using the Hamming 
distance as described in Section III – noted as R+DRAH) 
outperforms most methods in every case. Only SVM and NB 
are able to match the performance of the proposed method, 

however, in just one test with each one of them. Therefore, 
the hamming-based R+DRA method presented in this 
research can be considered as the most consistent in its 
positive performance.  

TABLE I.  ACTIVITY RECOGNITION DATASET RESULTS 

Method Accuracy (%)  
CV10 66%T 50%T Mean 

R+DRA 93.06 91.46 91.87 92.13 
SVM 96.73 93.90 90.16 93.59 
NN 96.33 95.12 95.08 95.51 
NB 96.33 95.12 96.72 96.05 
DT 95.51 95.12 93.44 94.69 
R+DRAH 96.73 96.34 96.72 96.59 

The second series of tests considered a situation where 4 
sensors from the activity recognition environment had some 
type of failure. These 4 deactivated sensors were: 
microwave, dishwasher, washing machine and pans’ 
cupboard. Therefore, the aim of the following series of tests 
was to evaluate the performance of the methods in this 
situation of lack of information (input incompleteness), 
where the scenario is affected by an increasing amount of 
uncertainty. In addition to 4 sensors deactivated in the 
previous tests, another series of tests that also deactivated 
the cup’s cupboard sensor were run. The results of these 
tests are summarized in Table II:  

TABLE II.  ACTIVITY RECOGNITION DATASET RESULTS WITH 4 AND 5 
SENSORS DEACTIVATED 

Method 
Accuracy (%) 

4 sensors deactivated 5 sensors deactivated 
CV10 66%T  50%T CV10 66%T 50%T 

R+DRA 95.51 92.68 92.68 95.92 92.68 93.44 
SVM 96.73 93.90 90.16 96.73 93.90 90.16 
NN 97.55 93.90 95.08 97.14 92.68 94.26 
NB 96.73 95.12 95.08 93.87 92.68 94.26 
DT 94.28 95.12 93.44 93.87 95.12 93.44 
R+DRAH 97.55 95.12 96.74 97.55 93.90 95.94 

These series of tests reflect a similar situation than the 
previous ones: the proposed method is the best in accuracy 
in almost every situation, while other methods are just able 
to match its performance, in one test at most (like the NN in 
CV10). The fact that the accuracy of R+DRA-based methods 
sometimes increases under these levels of inconsistency is 
not strange. This is because when fewer sensors are utilized 
in the system, the EBRs contain fewer antecedents and 
therefore need fewer conditions to be activated. 
Accordingly, the E-BRB is less restrictive, and more 
information is activated for an input, presumably leading to 
more accurate outcomes. 

Table II also illustrates that, when 5 sensors were 
deactivated, although the proposed method is the best 
performing in the CV10 and 50% train tests, Decision Table 
outperforms it in the 66% train. In order to contrast these 
results, one final series of tests deactivating one more sensor 
(hall-bathroom door) were run. Note that in these final tests, 
6 sensors are deactivated (43% of the total), hence the 
uncertainty of the activity recognition environment can be 
considered as substantial. As Table III illustrates, methods 
like NN, NB and DT are affected by the lack of information 
and increasing uncertainty. Nevertheless, R+DRA methods 
are barely affected by this factor. Especially in the 50% train 
tests, where fewer observations are used for training, 

2696



  

R+DRA still maintains its accuracy over 95% of the testing 
observations, which is almost 2% better than the second 
best-performing method in the case where 6 sensors were 
deactivated. This capability of R+DRA to maintain a high 
accuracy despite increasing levels of incomplete data and 
uncertainty can be of great use when approaching real 
scenarios, like real-time activity recognition. 

TABLE III.  ACTIVITY RECOGNITION DATASET RESULTS WITH 6 
SENSORS DEACTIVATED 

Method Accuracy (%) 
CV10 66% T 50% T 

R+DRA 95.10 91.46 92.68 
SVM 95.10 89.02 92.62 
NN 95.51 89.02 91.80 
NB 93.46 91.46 93.44 
DT 92.25 92.68 91.80 
R+DRAH 96.73 92.68 95.12 

Finally, in order to contrast the results, a series of one-
tailed, unpaired (Type2) T-tests were run to measure the 
statistical significance of the accuracies obtained from the 
tested methods against the R+DRAH ones. Table IV 
includes the p-values retrieved from these tests as well as the 
average time complexity (in seconds) of the tests run. 

TABLE IV.  TIME COMPLEXITY AND SIGNIFICANCE TESTS OF THE 
STUDIES PERFORMED 

Method 
Summary comparison against R+DRAH 

T test-results 
(p-values) 

Time (s) Software 
used CV10 66%T 50%T 

R+DRA 0.0001 3.3 0.5 0.6 RIMER [12] 
SVM 0.0051 3.8 1.3 1.0 Weka [11] 
NN 0.0428 0.3 0.0 0.1 Weka [11] 
NB 0.0191 0.1 0.0 0.0 Weka [11] 
DT 0.0005 1.8 0.3 0.4 Weka [11] 
R+DRAH -     3.2 0.5 0.6 RIMER [12] 

As Table IV illustrates, R+DRAH is significantly more 
accurate than every other method (at 95% confidence, since 
every p-value is less than 0.05). Regarding the time 
complexity, the software in which each method is 
implemented plays a crucial role, since it is not possible to 
verify which implementation is more efficient. While SVM, 
NN, NB and DT were run using Weka [11], the RIMER-
based methods were tested using the RIMER Tool [12]. 
Despite this fact, it can be considered that the proposed 
method is highly efficient since it does not need any 
complex pre-processing method to generate rules [3] and it 
retrieves the decision results in a short period of time: 
3.2secs for the 10-fold Cross Validation tests, the longest run 
in this study. This means that the proposed method needs 
just about 13 milliseconds to provide an output for each 
input vector (3200 milliseconds / 245 observations). 

V. CONCLUSION 
This paper presents RIMER+ as a suitable decision 

support approach that can be used to model the sensor data 
and expert knowledge needed to deliver reliable activity 
recognition. The E-BRBs included in RIMER+ contain 
mechanisms to represent various information-related 
uncertainties, such as vagueness, imprecision and 
incompleteness. The case studies presented in this paper 
illustrate that the proposed R+DRAH is able to overcome the 
accuracy retrieved by some of the most popular classifiers, 
preserving a considerably low time complexity. Moreover, 

when some of the sensors were deactivated simulating 
uncertainty in the sensor data, R+DRAH demonstrated to be 
a very robust method in situations of input incompleteness, 
performing significantly better than any other classifier.  

As it was shown, the performance of RIMER+ can be 
considerably enhanced when the hamming distance is used 
to measure the similarity between inputs and rules in a 
binary sensor-based scenario. Hence, it is worth noting that 
many other elements could be modified to further improve 
R+DRAH, e.g., adding expert knowledge to the E-BRB or 
using other inference engines of similarity functions.  
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