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Abstract— The electrocardiogram (ECG) is a key diagnostic
tool in heart disease and may serve to detect ischemia, arrhyth-
mias, and other conditions. Automatic, low cost monitoring
of the ECG signal could be used to provide instantaneous
analysis in case of symptoms and may trigger the presentation
to the emergency department. Currently, since mobile devices
(smartphones, tablets) are an integral part of daily life, they
could form an ideal basis for automatic and low cost monitoring
solution of the ECG signal. In this work, we aim for a real-
time classification system for arrhythmia detection that is able
to run on Android-based mobile devices. Our analysis is based
on 70% of the MIT-BIH Arrhythmia and on 70% of the MIT-
BIH Supraventricular Arrhythmia databases. The remaining
30% are reserved for the final evaluation. We detected the R-
peaks with a QRS detection algorithm and based on the detected
R-peaks, we calculated 16 features (statistical, heartbeat, and
template-based). With these features and four different feature
subsets we trained 8 classifiers using the Embedded Classifica-
tion Software Toolbox (ECST) and compared the computational
costs for each classification decision and the memory demand
for each classifier. We conclude that the C4.5 classifier is best
for our two-class classification problem (distinction of normal
and abnormal heartbeats) with an accuracy of 91.6%. This
classifier still needs a detailed feature selection evaluation. Our
next steps are implementing the C4.5 classifier for Android-
based mobile devices and evaluating the final system using the
remaining 30% of the two used databases.

I. INTRODUCTION

The electrocardiogram (ECG) is a key diagnostic tool in
heart disease and may serve to detect ischemia, arrhyth-
mias, and other conditions. Since mobile devices such as
smartphones or tablets are an integral part of daily life
[1], [2], they could form an ideal basis for a mobile ECG
monitoring and arrhythmia classification application. The
PhysioNet/Computing in Cardiology Challenge 2011 [3] had
the target of developing an efficient mobile algorithm for
displaying a diagnostically useful 12-lead ECG recording.

Even with the deployment of applications that enabled
the possibility of displaying the 12-lead ECG recording, the
electrode application in case of 12-lead ECG recording or
the interpretation beyond quality assessment is limited to
specifically trained medical personnel. An automatic, low-
cost monitoring solution of the ECG signal, even in the
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home environment, would be a major advantage. It could be
used to provide instantaneous analysis in case of symptoms
and may trigger—or prevent—presentation to the emergency
department or an outpatient unit. Such a solution should
operate continuously over an extended period of time (e.g.
12 hours) and should be fully portable and as unobtrusive as
possible as not to interfere with daily life activities.

In the following, the work of two research groups [4],
[5] performing an embedded arrhythmia classification on
mobile devices like smartphones are summarized. Yen et al.
[4] used a wavelet decomposition to build a noise-tolerant
algorithm and calculated higher-order statistics features. For
the classification of seven different ECG beat types, a back
propagation neural network was used. They evaluated their
algorithm using 15 selected records from the MIT-BIH
Arrhythmia database [6] and achieved an average recognition
rate of 98.34%.

Oresko et al. [5] presented two smartphone-based algo-
rithms for classification of cardiovascular diseases. For the
classification of five different ECG beat types, a multilayer
perceptron was used. They evaluated their algorithm using
5421 heart beats from the MIT-BIH Arrhythmia database
[6] using three-fold cross-validation with the five classes
uniformly distributed in the three folds. Recognition rates
between 81% and 99% were achieved. These two classifica-
tion systems achieved high recognition rates, but their results
were based on few heartbeats/records.

In a preliminary version of this work [7] we showed a real-
time ECG monitoring and arrhythmia detection application
using Android-based mobile devices. In this previous work,
the MIT-BIH Arrhythmia [6] and the MIT-BIH Supraventric-
ular Arrhythmia [8] databases were used. The QRS detection
algorithm identified over 99.5% of the heartbeats in real-
time. The arrhythmia classification was based on a decision
tree classifier with a sensitivity of 89.5% and a specificity of
80.6%. Some datasets had to be excluded as they were for
example too noise prone.

In this work, we exploit potential arrhythmia classification
algorithms for use on Android devices using the complete
MIT-BIH Arrhythmia [6] and MIT-BIH Supraventricular
Arrhythmia [8] databases. The challenge of limited hardware
resources in smartphones is addressed using the Embedded
Classification Software Toolbox (ECST) [9]. We aim for a
classification system with high classification accuracy and
simultaneously with low computational complexity.
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II. METHODS

A. Data

PhysioNet [10] provides free access to a large connection
of recorded physiological signals. From this website, we used
the MIT-BIH Arrhythmia [6] and the MIT-BIH Supraventric-
ular Arrhythmia [8] databases. The recordings were digitized
with a sample rate of 360Hz. The MIT-BIH Arrhythmia [6]
database consists of 48, and the MIT-BIH Supraventricular
Arrhythmia [8] database of 78 half-hour ECG recordings. We
used the available beat annotations provided by PhysioNet
[10]. In this work, only the raw ECG signals of lead II
(adapted from Einthoven) were used.

B. Beat Classification

Our aim was to give indications for present abnormal
heart beats. Hence, we fused all annotations provided for
the two databases into the classes normal and abnormal
beat. The abnormal beat class consisted of: (left/right) bun-
dle branch block beats; atrial/aberrated atrial/nodal (junc-
tional)/supraventricular (atrial or nodal) premature beats;
ectopic (atrial or nodal) beats; (R-on-T) premature ventric-
ular contractions; atrial/nodal (junctional)/supraventricular
(atrial or nodal)/ventricular escape beats; paced beats; fu-
sion of paced/ventricular and normal beats; unclassifi-
able/unclassified beats.

C. QRS Detection

This QRS detection equalled the QRS detection algorithm
illustrated in the preliminary paper as with this algorithm
99.59% heartbeats of the MIT-BIH Arrhythmia [6] and
99.58% heartbeats of the MIT-BIH Supraventricular [8]
database were detected [7]. The raw ECG signal was pre-
processed with digital filters according to Pan & Tompkins
[11] consisting of a Bandpass filter, five-point differentiation,
squaring operation, and moving window integration. The
single QRS complexes were then extracted using a threshold-
based method. The threshold was calculated in applying a
moving average filter of size 150ms to the output of the
Pan-Tompkins algorithm.

D. Feature Extraction

We calculated 16 features for each heartbeat (Table I).
These features were divided into the three groups statistical
features, heartbeat features, and template-based features. The
statistical features and the template-based features [12] were
calculated using 400ms windows around the R-peak (150ms
before and 250ms after the R-peak).

We generated two templates (used for the template-based
features) from the first six detected R-peaks in a fully
autonomous approach. First, the individual waveform ar-
eas of each 400ms heartbeat were calculated. Second, the
heartbeats were ordered according to the smallest differ-
ence to the average waveform area of the six heartbeats
(starting with heartbeats smaller than the average value in
case of equality in value). Third, the Pearson correlation
between two consecutive heartbeats (of this ranked order)
was calculated and the first two heartbeats with a Pearson

Fig. 1. Screenshot of the current QRS detection and feature extraction
application implemented in Java. The green numbers display the current
heart rate (left) and the current RR-interval (right). The upper and lower right
numbers correspond to the maximum heart rate/RR-interval and minimum
heart rate/RR-interval, respectively, that appeared in the signal so far. The
upper signal is the current ECG signal with normal heartbeats highlighted
in green, abnormal heartbeats in red. The lower signal is the output of the
Pan-Tompkins algorithm.

correlation higher than 0.95 were chosen as templates. If
none of the above heartbeats fulfilled these conditions, the
first two heartbeats in the ranked order were chosen. Both
templates were adapted over time to refrain from expert-
supervised selection of normal beats [7].

E. Implementation

The previously described algorithms for QRS detection
and feature extraction were implemented in Java using the
Android SDK 2.3.3 (Google Inc., Mountain View, CA,
USA). Fig. 1 shows the screenshot of this Android applica-
tion. Android is the most widely used smartphone operating
system with a market share of 79.3% [13] and Android is
an open source operating system.

F. Embedded Software Classification Toolbox

For the design of the classification system, we used the
Embedded Classification Software Toolbox (ECST) [9]. In
this toolbox, different classification systems can be trained
and compared according to their classification rate in each
classification decision, and the complexity of the trained
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TABLE I
SET OF 16 FEATURES FOR EACH HEARTBEAT WITH THE ASSIGNMENT TO THE FIVE DIFFERENT FEATURE SETS (FS).

Statistical features (FS 2) Heartbeat features (FS 3) Template-based features (FS 4)

1. Mean 7. QRS-width* 13. Maximal cross-correlation coefficient to template 1*

2. Minimum value 8. RR-interval* 14. Maximal cross-correlation coefficient to template 2*

3. Maximum value 9. Previous RR-interval 15. Area difference to template 1*

4. Standard deviation 10. QR-amplitude 16. Area difference to template 2*

5. Kurtosis 11. RS-amplitude
6. Skewness 12. QRST-area︸ ︷︷ ︸

FS 1

Features assigned to FS 5 are marked with *.

TABLE II
COMPUTATIONAL COST, ACCURACY (ACC), SENSITIVITY (SENS), AND SPECIFICITY (SPEC) ANALYSIS USING THE ECST [9] FOR THE FEATURE SET

1 WITH ALL FEATURES. THE SHOWN COMPUTATIONAL COSTS ARE NECESSARY FOR ONE CLASSIFICATION DECISION.

Classifier ACC SENS SPEC Computational Cost Memory Demand
[%] [%] [%] +,− × ÷

√
x ex ≤ Floats Integers

AdaBoost M1 74.1 73.7 74.4 10 0 0 0 0 11 20 30
C4.5 91.6 90.9 92.3 0 0 0 0 0 31 1819 10917
Linear Regression 74.6 69.7 82.3 33 32 2 0 0 5 34 0
Multilayer Perceptron 88.1 86.7 89.7 173 162 11 0 11 1 173 0
Naı̈ve Bayes 64.9 60.6 74.9 32 192 64 32 32 1 66 0
Nearest Neighbor 92.8 92.3 93.3 1263781 1348032 0 84252 0 84252 1348032 84253
PART 90.5 89.3 91.7 0 0 0 0 0 1901 1901 4091
SVM 77.0 72.0 84.9 65 32 16 0 0 2 51 0

TABLE III
ACCURACY (ACC), SENSITIVITY (SENS), AND SPECIFICITY (SPEC) ANALYSIS USING THE ECST [9] FOR THE FEATURE SETS (FS) FS 2, FS 3, FS 4,

AND FS 5. THE SHOWN COMPUTATIONAL COSTS ARE NECESSARY FOR ONE CLASSIFICATION DECISION.

Classifier
FS 2 FS 3 FS 4 FS 5

ACC SENS SPEC ACC SENS SPEC ACC SENS SPEC ACC SENS SPEC
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

AdaBoost M1 60.0 58.0 63.5 74.3 74.1 74.5 70.6 68.0 74.1 74.2 72.2 76.7
C4.5 86.6 85.6 87.8 89.6 88.6 90.8 75.1 73.0 77.7 86.2 85.9 86.5
Linear Regression 57.7 56.0 61.1 68.4 64.4 75.5 67.1 62.0 80.1 67.7 63.2 76.9
Multilayer Perceptron 70.4 65.5 80.2 80.4 76.8 85.2 68.9 66.8 71.5 72.0 70.9 73.3
Naı̈ve Bayes 56.1 54.3 61.4 64.3 51.5 71.6 65.9 60.0 83.6 66.6 60.6 81.8
Nearest Neighbor 87.6 86.9 88.3 90.8 90.5 91.8 71.3 71.5 71.2 85.0 84.7 85.2
PART 81.4 80.1 84.1 87.4 85.5 89.5 72.8 72.3 75.6 84.1 84.5 76.5
SVM 59.5 56.5 68.1 71.2 68.2 75.2 66.8 61.3 82.0 67.0 61.5 82.6

systems are analyzed. This toolbox integrates the WEKA
library [14].

We used 70% of each database for the training phase.
The remaining 30% were assigned for testing, however,
we did not consider the testing dataset in this work. We
determined the above mentioned 16 features (Table I). This
resulted in 89 datasets with the total number of 196487
heart beats and corresponding feature vectors. Due to the
uneven distribution of heart beats in the two classes and the
importance of high accuracy for the detection of abnormal
beats, we used all feature vectors of the abnormal class
(resulted in 42126 feature vectors) and randomly picked the
same number of feature vectors of the normal class. Thus,
the different classification systems were trained using 84252
feature vectors.

No single classifier is suitable for all classification tasks
(No Free Lunch Theorem) [15]. Therefore, the following

classification systems were compared [15], [16]: AdaBoost
M1, C4.5, Linear Regression, Multilayer Perceptron, Naı̈ve
Bayes, Nearest Neighbor, PART, and Support Vector Ma-
chine (SVM).

We did not perform a preprocessing step except for the
SVM. For the SVM classifier, we applied a normalization
step to the features. Further, we did not perform a feature
selection step with the features in the ECST. Instead, we
compared five different feature sets (FS) (Table I): FS 1
consisted of all 16 features, FS 2 consisted of all statistical
features, FS 3 consisted of all heartbeat features, FS 4
consisted of all template-based features, and FS 5 consisted
of the features used by Gradl et al. [7] (QRS-width, RR-
interval, maximal cross-correlation coefficient to template
1, maximal cross-correlation coefficient to template 2, area
difference to template 1, area difference to template 2).

We chose the adjustable parameters as default parameters
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according to the WEKA data mining software [14]. For
evaluation, we applied ten-fold cross-validation.

III. RESULTS

Table II shows the computational cost, accuracy, sensitiv-
ity, and specificity analysis using the 8 different classifiers
evaluated with the ECST for FS 1. Table III shows the
accuracy, sensitivity, and specificity analysis using the 8
different classifiers evaluated with the ECST for FS 2, FS
3, FS 4, and FS 5. The best accuracy of 92.8% was obtained
with the kNN classifier using FS 1, followed by the C4.5
classifier (91.6%) using FS 1. The worst accuracy of 56.1%
was obtained with the Naı̈ve Bayes classifier using FS 2.

The computational costs per classification step are only
shown for the 8 classifiers using FS 1. The computational
costs were comparable for each classifier. The fewest com-
putational costs per classification step were used by the
AdaBoost M1 (21 operations total) classifier. The small-
est memory demand was used by the Linear Regression
classifier. The highest computational costs per classification
decision and the highest memory demand were needed by
the Nearest Neighbor (2,780,317 operations total).

IV. DISCUSSION

In this study, we exploited potential arrhythmia classi-
fication algorithms for use on Android devices using the
complete MIT-BIH Arrhythmia [6] and the complete MIT-
BIH Supraventricular Arrhythmia [8] databases with the
ECST [9].

The accuracies for the different classification systems
ranged from 56.1% (Naı̈ve Bayes with FS 2) to 92.8%
(Nearest Neighbor with FS 1). The sensitivities ranged from
51.5% (Naı̈ve Bayes with FS 3) to 90.9% (C4.5 with FS 1).
The specificities ranged from 61.1% (Linear Regression with
FS 2) to 93.3% (Nearest Neighbor with FS 1).

The Nearest Neighbor classifier had by far the highest
computational costs and the highest memory demands and
is hence not suitable for implementation on Android-based
mobile devices. The computational costs of the Nearest
Neighbor classifier are dependent on the used number of
feature vectors. In general, it is always good to have a lot of
data for the training of classification systems. Thus, reducing
the number of feature vectors in the training dataset should
not be favored.

The second best classifier was C4.5. This classifier had low
computational costs but the second highest memory demand.
The memory demand of this classifier depends on the number
of used features. Our suggestion is to use this classifier, as
a high accuracy, sensitivity, and specificity were obtained.
For decreasing the memory demand, we suggest to apply a
smaller number of features.

The best feature subset results was achieved with the
heartbeat features (FS 3). We suppose that applying a feature
selection procedure could further enhance the classification
accuracy, sensitivity, and specificity of the C4.5 classifier and
decrease the memory demands.

In the future, we are going to implement the C4.5 classifier
for Android-based mobile devices. In this work, we used
70% of the two databases for the training of the different
classification systems. Hence, the evaluation of the C4.5
classifier will be based on the remaining 30% of the two
databases.

Additionally, we are acquiring long-term ECG recordings
in patients suffering from heart conditions. We are further
planning to evaluate the QRS detection algorithm and the
implemented classification system on these acquired data.
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