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Abstract— Advanced hardware components embedded in
modern smartphones have the potential to serve as widely
available medical diagnostic devices, particularly when used in
conjunction with custom software and tested algorithms. The
goal of the present pilot study was to develop a smartphone
application that could quantify the severity of Parkinson’s
disease (PD) motor symptoms, and in particular, bradykinesia.
We developed an iPhone application that collected kinematic
data from a small cohort of PD patients during guided
movement tasks and extracted quantitative features using
signal processing techniques. These features were used in a
classification model trained to differentiate between overall
motor impairment of greater and lesser severity using standard
clinical scores provided by a trained neurologist. Using a
support vector machine classifier, a classification accuracy of
0.945 was achieved under 6-fold cross validation, and several
features were shown to be highly discriminatory between more
severe and less severe motor impairment by area under the
receiver operating characteristic curve (AUC > 0.85). Accurate
classification for discriminating between more severe and less
severe bradykinesia was not achieved with these methods. We
discuss future directions of this work and suggest that this
platform is a first step toward development of a smartphone
application that has the potential to provide clinicians with a
method for monitoring patients between clinical appointments.

I. INTRODUCTION

Parkinson’s disease (PD) is a complicated, chronic, and
debilitating neurodegenerative disease estimated to affect 1-
2% of the population over the age of 60 [1]. It is char-
acterized by a heterogeneous set of motor deficits including
tremor, bradykinesia, rigidity, freezing, and postural instabil-
ity. Bradykinesia, or the slowness of voluntary movement,
is a cardinal symptom of PD and correlates with overall
motor impairment [2]. It is therefore of interest to accurately
quantify the severity of bradykinesia in PD patients, not only
to improve diagnostics, but also to aid clinicians in devising
maximally effective treatment strategies.

The clinical “gold standard” for evaluating the severity of
PD symptoms is an assessment called the Unified Parkinson’s
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Disease Rating Scale, which includes an evaluation of motor
symptoms referred to as the motor subscore (UPDRS III),
along with questionnaires about quality of life, mentation
and mood, and complications of drug therapy [3]. The eval-
vation of upper extremity bradykinesia within the UPDRS
IIT involves a trained clinician’s observing and scoring of
a patient during three kinematic tasks: 1) repetitive wrist
pronation/supination for 15 seconds, 2) rhythmic tapping of
the thumb and index finger together for 15 seconds, and
3) opening and closing of the hand for 15 seconds. Speed,
amplitude, and rhythmicity are qualitatively assessed for each
task and used to score patients on a scale from 0 (normal
motor activity) to 4 (the most severe impairment). As with
any subjective assessment, this way of scoring patients re-
sults in some inconsistency across clinicians; several studies
have demonstrated low inter-rater reliability [4].

Movement disorders researchers have recently invested in
developing automated, quantitative methods for assessing
motor symptoms of PD. Specialized equipment including
electronic MIDI keyboards [2], accelerometers [5] and gyro-
scope sensors [5,6,7] have been used to capture kinematics of
PD patients’ performance of specific voluntary motor tasks.
Data from patient-worn gyroscope and accelerometer sensors
have also been used to effectively predict global dyskinesia
severity during arm resting or extension [8], the severity of
rest, postural and kinetic tremors [9], and speed, amplitude
and rhythm components of UPDRS scores [4]. These devices
require specialized equipment that is either expensive or
custom built in a lab setting and usually require technical
expertise. With health care practices evolving toward person-
alized treatments and telemedicine, there is potential utility
in developing diagnostic systems that could be easily used
by patients at home [8].

The ubiquity of motion sensors embedded in smartphones
and open access to software development toolkits suggest
smartphones as viable devices for automated kinematic as-
sessment. The objective of the present study was to develop
a platform that uses smartphone hardware features, custom
software and algorithms, and clinically tested kinematic
tasks to automatically and accurately assess overall disease
severity, motor impairment, and bradykinesia in PD.

II. METHODS

A. Kinematic Data Acquisition

A total of 26 adult patients with idiopathic PD gave in-
formed consent to participate in this IRB-approved research
study in a movement disorders clinic on the day of an
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outpatient appointment. A total of 18 patients (8 female)
participated in the complete set of kinematic and clinical
tasks with each hand. The cohort of patients participating
were 68.5 +/- 12.1 (mean +/- std) years of age and had a
disease duration of 5.5 +/- 2.5 (mean +/- std) years.

Research participants first underwent a clinical exam and
either the full UPDRS assessment (N = 12) or the UPDRS III
(N = 6), performed by a board-certified movement disorders
neurologist (GV). We defined Bradykinesia Subscore (BSS)
for each arm as the sum of questions 23-25 from the UPDRS
[3], a value that can range from O in the case of no motor
impairment to 12 with maximal impairment. The UPDRS
total, UPDRS III, and BSS for the left and right arms
(separately) were stored in a secure database to serve as
clinical ground truth for offline data analyses. Left and right
hand measurements were treated as independent because
movement disorders clinicians assess the right and left side
of the body independently.

Participants next performed a battery of kinematic tasks
using an iPhone 5C (Apple, Inc.) and our custom software
application. These kinematic tasks were proctored by mem-
bers of the research team who were blinded to the clinical
UPDRS assessments. Participants performed a series of four
kinematic tasks, three trials each, with each upper extremity.
The order of tasks and hands tested were randomized in order
to eliminate any potential bias introduced by the sequence
of experiments. For each task, the patient was instructed to
make the movements as quickly and as large as possible. The
four tasks were: 1) hand opening and closing for 15 seconds
over the screen of the smartphone while the phone was lying
flat on a table, 2) repetitive tapping of the index finger for
15s on the screen of the smartphone, 3) alternating tapping
between the index and middle finger for 15s on the screen of
the smartphone, and 4) repetitive wrist pronation/supination
for 15s with arms extended straight in the front of the
patient and the smartphone in a holder strapped to the
dorsal side of the patient’s hand. The alternating finger-
tapping task was also utilized because previous research
has demonstrated that alternating finger tapping on a MIDI
keyboard correlates highly with UPDRS III scores and with
bradykinesia [2]. Although three trials of each task were
measured, our data analyses used only the first trial in order
to eliminate variability resulting from varying rest periods
between trials across tasks and patients.

B. Custom Software Application

We developed a custom iPhone (Apple, Inc.) application to
capture kinematic data from tasks imitating those performed
during the UPDRS 1III [3] and from an alternating finger
tapping task that had been tested previously with PD patients
[2]. During application use, users first entered the system
by providing a unique identifier via a login screen (Fig. 1)
and then navigated through a series of views corresponding
to specific tasks performed throughout the data collection
process. All patients were assigned unique identifiers in order
to keep proctected health information strictly confidential
throughout the study. For each session, the software auto-

matically presented the four movement tasks in a randomized
task order.

Fig. 1.

Diagrams of application use. A) login screen, B) positioning during
wrist pronation/supination task, C) positioning during finger tapping task.

Five separate built-in hardware components were ac-
cessed throughout a typical usage session: the gyroscope,
accelerometer, capacitive touch screen, microphone, and the
front-facing camera. Gyroscope and accelerometer data (task
4) were sampled from each orthogonal coordinate at 100
Hz. Data from the capacitive touch screen were acquired at
100 Hz (task 2, 3) in the form of boolean values describing
the contact of a user’s finger with the screen (i.e. 1 when
the patient has their finger on the screen, and O otherwise).
Sound data were captured from the microphone and initially
stored in Core Audio Format (.caf), before conversion into
Waveform Audio (.wav) format for external processing (task
2, 3). Video data from the front-facing camera were acquired
at 30 Hz (task 1) and written to Quicktime Movie (.mov)
format for external processing. During execution, only hard-
ware components associated with movement for each task
were accessed, and data specific to each task were stored
within the application sandbox throughout application use.
These data were later extracted and packaged for analysis
using the Organizer window of Xcode 5 (Apple, Inc.).
Acquired data were visually inspected for correspondence
with movement features during application development and
throughout clinical data collection for noted instances of
significant fatigue (slowing of movement and decreases in
amplitude [2]) and pauses; rigorous quantitative reliability
and validity testing were not performed.

C. Feature Quantification

We quantified features from our kinematic task data
that we hypothesized would be informative for describ-
ing frequency, amplitude and rhythmicity, which are the
movement features visually assessed by neurologists during
the repetitive movements of the UPDRS III [4]. For the
hand opening/closing task, movement signals were extracted
from video as the sum of pixel brightness values for each
frame given that recordings were acquired under constant
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lighting conditions and fixed hand distances within sessions.
Average frequencies of repetitive hand movements (task 4)
and wrist movements (task 1) were quantified as the peak
frequency from the power spectral density (PSD), computed
using Welch’s method with 4 second windows with 50%
overlap. Average frequency from tap data (tasks 2, 3) was
calculated by averaging the number of taps per second
over 5s windows with 50% overlap. A related quantity,
speed of movement, was quantified as the root mean square
(RMS) angular velocity from gyroscope signals (task 4) [6].
Similarly, a surrogate for speed of movement was quantified
as the average peak value of the microphone signal (tasks
2,3), calculated with 5s windows with 50% overlap, under
the assumption that the force of the tap is correlated with
velocity of movement. Amplitude of the dominant rhythm
was quantified as the power of the peak frequency from the
PSD normalized to the total power of the PSD (tasks 1,4).
Rhythmicity was quantified as the coefficient of variation
(CV) of the intervals between successive strikes of the same
finger and the CV of the durations of contact between
each finger and a specified region of the touchscreen (tasks
2,3), which were preprocessed using a logl0 transformation
to remove skewness in the distribution of values [2]. To
assess the slowing of movement as a function of time, we
computed the PSD from consecutive 4s segments of the data
trace (using 1.5 s windows and 50% overlap with Welch’s
method), and extracted the slope of a least-squares fit of
the peaks over each window (tasks 1,4). As patients fatigue
during the wrist rotation task, their movements may become
more imprecise. To capture the amount of signal that came
from “off-axis” gyroscope signals, we computed the RMS
value from the cross-correlation of each of the X- and Z-
axis gyroscope signals with the Y-axis signal, and normalized
these with the RMS value from the Y-axis auto-correlation.

D. Classification Methods

Due to limitations introduced by the number of samples in
the analysis, a rating scheme was implemented to simplify
the multi-class problem into a binary one by dividing the data
into two groups based on the midpoint of possible UPDRS III
scores: patients with scores less than 35 (N = 7) were labelled
as having “less severe” symptoms, and those with scores
greater than or equal to 35 (N = 11) were labelled as having
“more severe” symptoms. Similary, a separate evaluation was
performed with the BSS, where scores less than 6 were
labelled as “less severe” (N = 17) and those greater than or
equal to 6 were “more severe” (N = 19). UPDRS totals were
not used in the analyses because of limitations in sample
size. From the feature data, machine learning models were
developed to classify patients according to two independent
response variables: the UPDRS III for the most affected
hand/arm and the BSS for each hand/arm.

Performance of models for both the UPDRS III and
the BSS were evaluated (separately) using 6-fold cross-
validation, which was chosen to most evenly distribute data
in testing folds. Both a support vector machine (SVM), built
under the C-SVC formulation with a radial basis function

(RBF) kernel, and a random forest model with 500 trees,
were used (separately) as the classification engine in the
model. The RBF kernel was chosen for its ability to identify
non-linear relationships in the feature space. During each
fold of cross validation, the following algorithm was used
to test the model: 1) Use stratified sampling to split the
data into training (%), and testing (%) subsets, 2) Train
the classifier with the training set, 3) Predict UPDRS III
or BSS classes for patients within the testing set using
the SVM classifier, 4) Calculate performance metrics. In
order to assess the accuracy of each model, classification
error (percentage of wrongly-classified subjects) and area
under the non-parametric receiver operating characteristic
curve (AUC) were respectively calculated from classification
likelihoods after cross-validation. In addition to this, several
of the most discriminatory features were tested for their
association with PD motor impairment in a multiple linear
regression model using UPDRS III scores as the model
response variable. A logistic regression model with multiple
explanatory variables was also tested for the more severe/less
severe UPDRS III rating scheme.

III. RESULTS
A. Clinical Data

The distributions of UPDRS III scores from the most af-
fected side and Bradykinesia Subscores per side are depicted
in Fig. 2. Fig. 3 details two types of signals captured from the
iPhone during a typical usage session. Examples are given
for a patient with less severe symptoms (L) and a patient
with more severe symptoms (R).

A) B)
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Fig. 2. Histograms of of clinically assessed scores of motor severity: A)
UPDRS 1III, B) Bradykinesia Subscores.

B. Classification Results

Among all of the quantified features, the top 10% most
discriminatory in the less severe/more severe UPDRS IIII
classification problem include: CV logl0 duration of single
finger tap (CvDurSingle), CV logl0 duration of finger tap-
ping for both fingers during alternating tapping (CvDurAlt),
mean peak loudness for the index finger from alternating
finger tapping (AvgLoudnessIndex), CV peak loudness for
the middle finger from alternating finger tapping, and mean
peak loudness for the middle finger from alternating finger
tapping. These features were all found to have an area
under the ROC curve of greater than 0.85, where the less
severe/more severe UPDRS III label was used as the response
variable in calculation. Fig. 4 shows correlation plots for the
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Fig. 3. Examples of raw signals collected from the iPhone during different
movement tasks. (A) depicts gyroscope signals for a patient with less severe
(left) and more severe (right) motor symptoms, and (B) depicts alternating
tapping touch-screen signals (inverted for visual clarity) for a patient with
less severe (left) and more severe (right) motor symptoms.

CvDurAlt and AvgloudnessIndex features. Combinations
of the top performing features were tested in each of the
classification models. Significant classification results with
UPDRS 1III scores as response variables included models
using the CvDurSingle, CvDurAlt, and Avgl.oudnessIndex
features within each of the classifiers (separately). The SVM
classifier performed with 0.055 average error rate (AUC =
0.9166), and the random forest classifier performed with
0.111 error rate (AUC = 0.9166).

Among the regression models constructed with combina-
tions of top-performing features as predictor variables, one
showed significant association between predictor variables
and UPDRS 1II scores. A multiple linear regression model
with CvDurSingle and the coefficient of variation of the
interval of alternating finger tapping (CvIntAlt) showed that
CvIntAlt was significantly associated with UPDRS III scores
(p = 0.0412, multiple R? = 0.232).

No significant classification accuracy was achieved using
BSS scores as response variables in either classifier for
any tested feature set (0.35 minimum error rate for both
classifiers).
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Fig. 4. Scatterplot with regression line (blue) and LOESS 95% confidence
bands (gray) of data from A) CvDurAlt and B) AvgLoudnessIndex features.

IV. DISCUSSION

This pilot study demonstrates a system that correctly
classifies overall motor impairment of greater and lesser
severity with an accuracy of 94.5% from a relatively small
cohort of patients with PD. Our system includes software
that guides participants to perform a set of kinematic tasks
that use embedded hardware features of a smartphone and an
algorithm that automates classification of motor impairment
with machine learning techniques trained to clinical neurol-
ogy ratings as ground truth. At this stage, the system is not
able to classify the severity of bradykinesia. Further work
will seek to determine whether poor BSS classification was
a result of inadequate capture of some kinematic features,
poor feature selection, limitations of the small sample size
or other factors.

In contrast to several systems that place multiple sensors
on the patient, our study uses a widely available con-
sumer device. The iPhone application and analysis soft-
ware developed for this project provide proof-of-principle
demonstration that consumer smartphone devices have the
potential to help assess motor symptoms of PD. Severity
of resting tremor already has been successfully quantified
based on data from accelerometers and gyroscopes within
smartphones [5]. To the best of our knowledge, this is the
first time that a smartphone touch-screen and microphone
have been used for assessment of motor symptoms for PD.
Next steps with this project will involve experiments to test
the validity and reliability of kinematic measurements with
the chosen hardware components, testing of longer trials over
a larger cohort of patients, and inclusion of multiple blinded
rater UPDRS assessments to extend applicability of results
beyond a single neurology clinic. The development of a more
consistent, mobile way of evaluating patients could facilitate
more appropriate and personalized treatments.
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