
  

 

Abstract - Previous electroencephalogram (EEG) studies have 

shown that cognitive workload can be estimated by using several 

types of cognitive tasks. In this study, we attempted to 

characterize cognitive tasks that have been used to manipulate 

workload for generating classification models. We carried out a 

comparative analysis between two representative types of 

working memory tasks: the n-back task and the mental 

arithmetic task. Based on experiments with 7 healthy subjects 

using Emotiv EPOC, we compared the consistency, robustness, 

and efficiency of each task in determining cognitive workload in 

a short training session. The mental arithmetic task seems 

consistent and robust in manipulating clearly separable high and 

low levels of cognitive workload with less training. In addition, 

the mental arithmetic task shows consistency despite repeated 

usage over time and without notable task adaptation in users. 

The current study successfully quantifies the quality and 

efficiency of cognitive workload modeling depending on the type 

and configuration of training tasks. 

I. INTRODUCTION 

With the progress in sensors and algorithms for 
electroencephalogram (EEG) data, it has become possible to 
perform real-time estimation of human cognitive states using 
EEG. In particular, mental workload, or the cognitive load 
that is related to working memory, is one of the most popular 
research topics. Mental workload is involved in smart device 
applications in a variety of fields such as education and mental 
healthcare. Recent researches have shown that the 
applications might be realized by utilizing  simple dry and 
wireless EEG sensors such as Emotiv EPOC and Neurosky 
MindWave [1-2]. It is necessary to derive cognitive models to 
estimate workload level based on real-time EEG data. The 

cognitive models are generated by applying machine learning 
algorithms to EEG data recorded from subjects exposed to 
different workload levels in training sessions. Although there 
is no standardized method for manipulating a subject’s 
workload level,  we can take advantages of  well-defined 
cognitive tasks that are known to be associated with working 
memory. At the very least, the cognitive task should be able to 
induce a user’s baseline workload level and high-level 
workload. In addition, the cognitive task used in training 
sessions would be more effective if it is intuitive to typical 
users and time-efficient. Furthermore, these requirements 
should be met even in realistic use-case scenarios where 
convenient EEG sensors are  more vulnerable to unwanted 
noises with respect  to those used in experimental settings. 
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The majority of the previous researches on EEG-based 
workload estimation has used simple and well-controlled 
working memory tasks that allow us to easily control  
difficulty level in order to induce at least 2 clearly separable 
workload levels (i.e., high and low).  Mental arithmetic task 
and n-back task have been widely used to generate 
classification models to estimate workload level. The n-back 
task is  used to measure subjects’ working memory [3]. The 
n-back task requires a subject to view a sequence of letters or 
figures and answer whether the currently displayed letter or 
figure is the same as that which appeared n-steps before. The 
easiest form of the n-back task, the 0-back, is often used to set 
the baseline workload level, and subsequent n-back (n > 0) 
tasks are used to induce a higher level of workload by asking 
subjects to remember and compare a current letter or figure to 
the previously displayed one [4-6]. The 2-back task is 
preferred since the 3-back task has been shown to be too 
difficult for subjects to complete in order to properly induce a 
high workload [7]. Mental arithmetic tasks have also been 
frequently used to train model users’ workload [8-9]. 
Typically, mental arithmetic tasks require subjects to solve 
several problems of addition between two numbers within a 
predetermined time. Mental arithmetic tasks do not rely on 
any tools (e.g., computers, pens and paper) and are known to 
be closely related to working memory [10]. Although many 
studies on these tasks show that users’ workload can be 
estimated with acceptable accuracy based on EEG data, there 
has been little investigation of the feasibility of these tasks 
with regard to practical cases  where a user with a simple EEG 
sensor performs a training session with  no or little  instruction 
about the tasks. 

Thus,  in this paper, we  look into practical issues 
regarding  n-back and mental arithmetic tasks in order to   
obtain accurate classification models of high and low 
workload that can be used in real applications. Given the 
dependency of  tasks on the quality and efficiency of workload 
modeling, we compared the 2 tasks with the same participants 
and the same signal processing algorithms. First, we compared 
accuracy of classification models generated from each task to 
evaluate the consistency in inducing high and low workload 
levels within and between training and post-training sessions  
Second, we compared the time-efficiency of the tasks based 
on the between-session classification accuracy of the models 
achieved with varying lengths of the training session. Third, 
we conducted a time-course analysis to compare the 2 tasks in 
terms of consistency of workload induction in a series of 
post-training sessions over a longer period using intermediate 
sensor re-installation.  Finally,  we analyzed the behavioral 
data recorded during multiple post-training sessions to 
determine the existence of  training effects. In Section III, we 
discussed the characteristics of tasks that can be considered to 
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generate reliable classification models of workload for 
real-time application. 

II. METHODS 

A. Experimental Design 

Seven healthy subjects (n = 2 females; n = 5 males) aged 

between 25 and 39 years participated in the experiment. We 

collected written informed consent from all participants. 

We employed the n-back task and the mental arithmetic 

task. A session of each task was composed of 2 difficulty 

levels, and each lasted approximately 3 minutes. For the 

n-back task, 0-back and 2-back formats were selected, as this 

combination shows the best classification accuracy versus 

other combinations (i.e., 0-back and 3-back) [4]. In each 

difficulty level, a series of alphabet letters were sequentially 

but independently displayed for 500 milliseconds with a 2000 

millisecond inter-stimulus interval. For the 0-back task, 

participants were asked to press a keyboard when the letter 

“X” appeared. For the 2-back task, participants were asked to 

respond when the letter was identical to that which appeared 

two letters earlier. Alphabet sequence presentation was 

randomized, and the frequency of target letters was set to 30% 

for both the 0-back and 2-back tasks. 

For the mental arithmetic task, we used multiplication 

problems of two positive integers with two levels of difficulty 

(i.e., 1-digit multiplication and 2-digit multiplication). To 

reduce potential fluctuations in difficulty during the 2-digit 

multiplication, we excluded problems where the product of 

the last digit did not exceed 10. We devised 2 variants of the 

mental arithmetic task with different test conditions. In the 

first condition, training time was fixed to 3 minutes for both 

the easy and hard tasks. For every trial, a problem was 

displayed on the screen until the subject entered an answer via 

a keyboard (hereafter referred to as “time-constrained”).  

There was no feedback regarding the correctness of the 

entered answer. In the second condition, the number of 

problems that participants had to solve was fixed at 40 for the 

easy level and 7 for the difficult level to balance training time. 

Instead of fixing the total training time, the training session 

persisted until the participants entered correct answers for 

every problem (hereafter referred to as “exhaustive”). 

Each participant was asked to perform 2 sessions (a training 

session and a post-training session) of the n-back task, and 2 

variants of the mental arithmetic task. During each of these, 

intermediate breaks were provided; the EEG sensor was kept 

on participants’ heads during these breaks.  

For a time-course analysis, a subset of participants (n = 2 
male and n = 1 female) were asked to perform 1 training 
session and 9 post-training sessions of the n-back task and the 
“exhaustive” mental arithmetic task over 5 days.  

B. Data Recording and Processing 

We recorded EEG data at a sampling rate of 128 Hz with 
14 electrodes using Emotiv EPOC. We also collected 
response times and the rate of correct answers during task 

performance. We applied a common reference average for 
spatial filtering. The EEG data was split into 4-second length 
data fragments with 3.5-second overlaps. We used the 
short-time Fourier transform (STFT) to obtain large number 
of features of higher resolution given the potentially high 
temporal dynamics of EEG signal [12]. For each data 
fragment, we applied the STFT to extract the power of 8 
equally sized (4Hz) frequency bands from 4 to 32 Hz in each 
of the 7 data sub-fragments of 1-second length with 
0.5-second overlaps. We attempted to fully utilize a total of 
784 features (14 channels × 8 frequency bands × 7 time 
points) in the classification model to explore as diverse 
features as possible. We used a support vector machine 
(SVM) with a linear kernel to identify and classify 2 levels of 
workload. The data recording and signal processing were 
implemented using Matlab. 

III. RESULTS 

For each participant, the average time to solve a 2-digit 
multiplication problem was significantly longer than that of a 
1-digit multiplication problem (p = 0.003; paired t-test). 
These results imply that the 2 difficulty levels were properly 
devised. 

A. Within-Session Consistency 

The classification accuracy of the models was computed 
from the n-back task training sessions and the variants of the 
mental arithmetic tasks based on 10-fold cross-validation (Fig. 
1). The accuracy was 98.6%, 94.2%, and 96.6% for the n-back 
task and the “time-constrained” and “exhaustive” mental 
arithmetic tasks, respectively. High overall accuracy (> 94%) 
indicates that all 3 tasks are capable of generating highly 
consistent and separable EEG signals during the training 
session. Six out of 7 participants showed the highest 
cross-validation accuracy possible in the n-back training 
session. The cross-validation accuracy of the n-back task was, 
however, significantly higher than those of 2 mental 
arithmetic tasks for each user (p = 0.028 and 0.027, 
respectively; paired t-test).  

B. Between-Session Consistency 

In addition to within-session consistency, we evaluated 
performance of the classification models generated above 
using the EEG data collected from post-training sessions. We 
assumed that the post-training session data should have 
similar patterns with the training data, given that the task was 
identical and the session was conducted immediately 
following the training session without re-installation of the 
EEG. 

  

 

Figure 1.  Within-/Between-session accuracy of the classification models. 
Lines on the bar indicate ranges of 1 standard deviation. 
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Nevertheless, classification accuracy decreased compared 
to those estimated by cross-validation (Fig. 1).  This result 
emphasizes the importance of evaluating between-session 
classification accuracy for unbiased assessment of model 
quality in an online test. 

Notably, the “exhaustive” mental arithmetic task showed 
the smallest decrease in classification accuracy compared to 
the n-back and the “time-constrained” mental arithmetic tasks.  
In particular, the decrease observed for the “exhaustive” 
mental arithmetic task was significantly smaller than that for 
the n-back task for each participant (p = 0.05; paired t-test). 

This indicates that the “exhaustive” mental arithmetic task 
has more between-session consistency in inducing 2 workload 
levels than the other tasks do. Moreover, the between-session 
classification accuracy showed marginal difference between 
the 2 mental arithmetic tasks for each participant (mean 
difference=8.7%, p = 0.05; paired t-test), even though the task 
itself was identical. We could not find any significant 
behavioral difference between the training session and the 
post-training session in terms of mean reaction time (p = 0.07; 
paired t-test) or number of correctly answered problems (p = 
0.485; paired t-test) per minute for both types of mental 
arithmetic task. Although the reason for better consistency in 
the “exhaustive” mental arithmetic task remains unclear, we 
postulate that a different paradigm or strategy for the same 
working memory tasks might have a crucial impact on the 
quality of the classification model by influencing the user’s 
engagement or motivation during the training session. The 
“exhaustive” type of task design is thought to motivate the 
participants to engage in the task so that consistent EEG 
features related to workload are strongly detected in different 
sessions. On the other hand, workload modeling based on the 
other 2 tasks seems sensitive to session-specific signals rather 
than workload-related signals. 

C. Time Efficiency of Training 

We conducted an in-depth comparison of the training time 
required to produce high between-session classification 
accuracy between the n-back and mental arithmetic tasks.  In 
this analysis, the “time-constrained” mental arithmetic task 
was included, as the training time was designed to be the same 
as that of the n-back task. We evaluated the between-session 
accuracy of the classification models generated from varying 
lengths of training EEG data (30, 60, 90, 120, 150, and 180 
seconds) on the post-training session data (3 minutes) for each 
participant. 

As shown in Fig. 2, the n-back task showed slightly higher 
classification accuracy than did the mental arithmetic task 
when using the 30-second training data. 

 

Figure 2.  Between-session accuracy of the classification models with 
varying lengths of training session. 

On the other hand, as the training time increased, the 
mental arithmetic task obtained relatively higher classification 
accuracy compared to the n-back task. For example, the 
average between-session classification accuracy of 80% was 
achieved with only the 60-second training session for each 
difficulty level for the mental arithmetic task, while the n-back 
task required more than double the length in training to 
produce the same level of accuracy. The classification 
accuracy was, however, saturated at a training time of 120 
seconds or above for the mental arithmetic task. This result 
indicates that each of the working memory tasks might have 
different time-efficiencies and optimal lengths of training for 
generating an accurate classification model. 

D.  Consistency in Multiple Sessions over Longer Periods of 

Time 

We investigated between-session accuracy of the 

classification models generated in the training session on 

multiple subsequent sessions over a longer period.  For this 

analysis, 3 of the participants conducted 9 post-training 

sessions for each of the n-back and “exhaustive” mental 

arithmetic tasks over 5 days. The average classification 

accuracy of the 3 participants for the mental arithmetic task 

was maintained generally higher than that for the n-back task 

in the 9 post-training session over 5 days (mean 

difference=9.4%, p = 0.049; paired t-test). During the whole 9 

post-training session, there was no significant difference 

between the variance of classification accuracies between the 

two tasks (p > 0.05; F-test). 

The between-session accuracy of the classification model 
based on the n-back task, however, showed an overall 
decrease during the post-training sessions for all participants 
(Fig. 3a). Particularly, the average classification accuracy 
during the first two and the last two sessions showed notable 
difference (17.5%) in the n-back task. On the other hand, no 
such trend was observed for the mental arithmetic task (Fig. 
3c). Similar to the previous result of between-session 
accuracy, this result implies that the classification models 
generated from the mental arithmetic task works more 
consistently also in the repeated use over long-period of time. 

Figure 3.  Trends of between-session accuracy and behavior over repeated 

post training sessions. The colors correspond to each participant. The 

numbers in (a) and (b) indicate the slope of each regression line. 
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We further analyzed the data from 3 participants in order 
to assess whether either task becomes easier through repeated 
training. We analyzed error trends and reaction time for the 
n-back task, and the number of correctly answered problems 
per minute for the “exhaustive” mental arithmetic task, during 
a total of 10 sessions for each task. As shown in Fig. 3b, the 
number of errors was drastically reduced as the post-training 
session was repeated (Fig. 3b). On the other hand, such trend 
was not observed for the mental arithmetic task (Fig. 3d).  In 
case of the n-back task, the decreasing trend of 
between-session classification accuracy and behavioral 
indicators (error rate) seems to have a notable relationship 
(Fig. 3a and Fig. 3b); there was a positive correlation between 
the slopes of regression lines for the classification accuracy 
and for behavioral error (r = 0.98) among the 3 participants. 
Decrease of the between-session classification accuracy was 
more clearly observed for the subjects who showed more 
behavioral improvement during the repeated sessions. The 
result implies that the mental arithmetic task is a relatively 
consistent workload task despite repeated use.  

IV. CONCLUSION AND DISCUSSION 

Previous studies have supported the possibility of 
EEG-based workload classification using simple sensors with 
advanced algorithms.  One factor to consider is the temporally 
efficient generation of accurate workload classification 
models in practical scenarios. Because it is virtually infeasible 
to make users perform a long period of training with arbitrary 
tasks, proper use of simple but well-defined cognitive tasks 
seems very important. This concern becomes more significant 
if our ultimate goal is to bring the technology into the 
real-world applications using EEG sensors with convenience 
but limited stability. Nevertheless, it is unclear what 
characteristics of the cognitive tasks should be considered for 
robust and efficient workload modeling that preserves high 
online classification accuracy. With these criteria, we 
compared 2 representative working memory tasks: the n-back 
and the mental arithmetic tasks. We used the Emotiv EPOC, a 
widely used wireless EEG sensor, to show how much 
modeling can be affected by the choice and settings of the 
training session.  

In our experiments, we analyzed between-session 
classification accuracy for estimating online performance, 
between-session classification accuracy with varying lengths 
of training session, and the effect of repeated training over a 
long period. The features included in our classification model 
showed similar spectral change to those previously reported 
[13-15] for all 3 working memory tasks. We could find that 
the average theta power (4-8Hz) was increased in frontal 
channels (AF3 and AF4) under high workload. On the other 
hand, alpha power (8-12Hz) was decreased in several frontal 
regions covered by AF3, AF4, F3, F4, F7, F8, FC5, and FC6. 
Moreover, increase of gamma (near 32Hz) was observed in 
parietal (P8) and temporal (T8) regions. These observations 
support that our experiments and signal processing were 
properly devised to measure cognitive workload. 

From our experimental results, we observed that the 
workload model based on the “exhaustive” mental arithmetic 
task that enforces participants to solve fixed number of 

problems without time constraint, consistently accounts for 
the post-training session data. The relatively poor 
between-session accuracy observed for the n-back task might 
have been caused by the following: i) the features associated 
with workload were not strong enough compared to other 
session-specific signals, which possibly originated from 
artifacts from repositioning of the sensor, body movement and 
fatigue during the task; and/or (ii) the participants adapted to 
task difficulty through repeated training so that workload 
induction became inconsistent compared to the first training 
session. It is yet unclear to figure out the direct cause but we 
could observe that repeated training on the n-back task 
resulted in relatively more user adaptation to the level of 
difficulty. Lastly, we found that the mental arithmetic task is 
efficient since it can achieve between-session classification 
accuracy within a shorter period of training session time. The 
classification accuracy of the n-back task showed steady and 
slow increase with longer length of training time as previously 
shown in [16]. 

Since our study contained a small number of participants 

and had rather specific formats for task designs, it may be hard 

to generalize whether the mental arithmetic task is always the 

better choice for workload modeling. Nevertheless, we 

believe that the results presented in our study may be helpful 

in understanding the impact of task choice and design for user 

training on the quality and efficiency of the resultant workload 

model, especially in practical situations with simple EEG 

sensors and limited instruction about the cognitive tasks. In 

order to develop robust models of workload, it is important to 

build a large EEG database from a large population of subjects 

performing diverse cognitive tasks. These 

subject-independent models should be further calibrated for 

each user to support more accurate real-time workload 

estimation. In any case, it is difficult to choose efficient and 

robust working memory tasks that can be applied to smart 

devices and associated applications for a real-time workload 

monitoring. Thus, we will further explore pragmatic 

configuration of cognitive tasks with larger number of 

populations by using the comprehensive comparative scheme. 
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