
  

 

Abstract— We describe a novel method for data mining 

spectro-spatiotemporal network motifs from 

electrocorticographic (ECoG) data. The method utilizes wavelet 

feature extraction from ECoG data, generation of compact 

binary vectors from these features, and binary vector 

hierarchical clustering. The potential utility of this method in 

the discovery of recurring neural patterns is demonstrated in 

an example showing clustering of ictal and post-ictal gamma 

activity patterns. The method allows for the efficient and 

scalable retrieval and clustering of neural motifs occurring in 

massive amounts of neural data, such as in prolonged 

EEG/ECoG recordings and in brain computer interfaces.  

 

I. INTRODUCTION 

There is a need for the development of neuroinformatics 
data mining and analysis techniques to enable the study of 
functional brain network across multiple spectro-
spatiotemporal scales concurrently [1],[2]. In this paper, we 
propose a novel system for the de novo computational 
discovery of recurring brain network motifs that occur over 
varying spectro-spatiotemporal scales in neural data. Neural 
activity arising from complex brain networks can be 
characterized by their specific structural or functional 
connectivity patterns or network ‘motifs’[3],[4]. Network 
‘motifs’ have been utilized in various fields to describe of 
recurrent patterns in a specific network or across several 
networks [5]. In signal analysis, time-series motifs can be 
characterized as recurring, similar subseries in a time-series 
dataset [6-8]. Recently the study of network motifs has been 
applied to electrophysiologic time series in the study of 
neuronal functional connectivity networks [3], [9], [10] . 

The main issues for analysis of large volumes of neural 
data are (a) representing high-dimensional spectro-
spatiotemporal features in a compact, noise robust manner, 
(b) efficient comparison of features across all subsequences, 
(c) and determining which features are correlated together. 
To motivate the need for a computationally efficient 
approach to these issues, consider that the typical ECoG 
recording consists of 100 separate channels recording at 1600 
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Hz. This represents ~14 trillion data points per 24 hours. In 
an n-item analysis with n = 8 bytes, an exact pair-wise 
comparison of this sample would require 264 gigabytes per 
sample per day. The sheer volume of data necessitates 
scalable data mining approaches to address current and future 
problems in clinical and research electrophysiology. To 
address these issues, we introduce a system of mapping 
neural spectro-spatiotemporal features to binary vector 
fingerprints. The use of compact binary codes allows for the 
efficient mining of preserved motifs using self-similarity 
search and co-clustering algorithms.  

Our main contribution is a system for 
electrophysiological pattern recognition analysis that is 
scalable to large quantities of high-dimensional 
electrophysiologic data. Automated discovery of brain 
network motifs will be advantageous for advancing the 
diagnosis and treatment of neurologic and psychiatric 
diseases. 

We demonstrate the fingerprinting algorithm in the 
investigation of network motifs consisting of gamma-range 
neural activities, which have found growing importance in 
the study of functional connectivity and in abnormal brain 
connectivity. For example, abnormal gamma oscillations 
have been implicated in the development of schizophrenia, 
[11] epilepsy, and Alzheimer’s disease [12]. Evidence of 
conserved network motifs yielding characteristic gamma 
oscillation ‘fingerprints’ have been described in motor-
evoked MEG activity and as the neurophysiologic basis of 
the default mode network (DMN) in ECoG [13], [14]. The 
strategy we developed is based on: 1) generation of compact 
binary codes representing spectro-spatiotemporal wavelet 
features of gamma activity 2) Unsupervised learning using 
hierarchal clustering. The rationale and framework for our 
strategy is described below:  

II. MATERIALS AND METHODS 

A.  Data Collection and Analysis 

We retrospectively collected the electrocorticography 
(ECoG) data of a patient with medically refractory partial 
epilepsy whose ECoG data were obtained through an 
Institutional Review Board approved protocol that 
retrospectively identified patients who had underwent 
intracranial subdural electrode placement as a part of epilepsy 
surgery evaluation in the UNC Hospitals Epilepsy 
Monitoring Unit Database between the dates of 9/1/2011 and 
9/1/2013. Continuous long-term recordings were obtained 
from Grass Recorder (Grass Technologies, Warick RI) with a 
sampling rate of 800 Hz. We selected ECoG data from the 
right frontotemporal subdural electrode grid. The sample 
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Figure 1.  ECoG recording and corresponding Morlet CWT 

 

used for analysis was a 1.5 hour long, 100 channel multi-
electrode recording. The sampling rate was 800 Hz and the 
data was not filtered during pre-processing. All data analysis 
was performed in Matlab 2012b (The Mathworks, Natick, 
MA) using custom Matlab scripts on a computer with dual 
quad-core Intel i7 CPUs at 2.5 GHz and 16 Gb of RAM.  

B.  Spectral feature extraction 

Initial dimensionality reduction of the ECoG dataset is 
performed by spectral feature extraction. Wavelet and 
spectral feature extraction have discriminative features which 
have been useful in developing brain computer interfaces 
(BCI) [15]. We convolved the ECoG with the complex 
Morlet continuous wavelet transform (CWT) as shown in 
Figure 1. To avoid edge effect from the complex Morlet 
CWT, we utilize an overlapping sliding window of the 
Morlet transform when designating peak points. We used a 
threshold using a 95% confidence level using a 1/f noise 
Markov Model of inherent brain noise, as described by 
Greenwood et al. as shown in Figure 2 [16]. Time-frequency 
peaks are then designated utilizing an intensity-weighted 
centroid blob detection algorithm. For study of gamma 
activity, detected blobs were included if they were greater 
than 50 ms, which is more than two low-gamma cycles. 

C.  Binary representation of ECoG data 

For further dimensionality reduction, the spectral-spatial 
information can be represented in sparse two-dimensional 
binary codes. To the best of our knowledge, binary 
representation of EEG/ECOG data feature patterns has not 
previously been investigated. The representation of high 
dimensional data into binary codes has proven indispensable 
for the efficient indexing and machine learning in various 
applications such as chemoinformatics, bioinformatics, 
audio/video search, internet data mining, amongst others 
[17]. A common thread of different applications of binary 
encoding has been the “similarity-preserving” problem with 
the objective to map data containing similar features into 
similar-preserving binary codes. Similarly, the challenge in 
encoding neural data efficiently in compact, one-dimensional 
binary vectors is in the appropriate selection and preservation 
descriptive features of high dimensional neural data. Binary 
representation is suitable for study of gamma activities, 
which tend to consist of transient, episodic, bursts of activity. 
Discrete events of bursts gamma activity have been used 
previously in the study of co-occurring gamma activity and 
slow wave sleep [18]. The binary presence or absence of 
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Figure 2.  Schema for binary discretization of wavelet features 

 

  

Figure 3.  Sub-selection of heatmap dendrogram of clustered self-

similarity matrix from yellow region of Figure 4. Higher values on the 

heatmap indicate higher Jaccard indices representative of more similarity. 
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gamma events has also been used in the study of co-activated 
structures as represented by interictal spike activity and in the 
study of functional connectivity as inferred from gamma 
events [19], [20]. 

D.  Generation of binary vectors 

We developed the use of a 3 dimensional binary matrix 
with 1 or 0 representing the presence or absence of a gamma 
event of at a frequency bin F at a given time bin T at a given 
spatial location L as shown in Figure 2. The spatial vector L 
represents intracranial electrode channel number and ranges 
from 1 to 100. The frequency vector F, ranges from 1 to 64 
and represents equidistant log-scale frequency bins between 1 
and 270 Hz. The spectral landmarks of neural activity 
recorded by ECoG are sampled into N time-bins with a finite 
time precision dT (i.e. T = N * dT). The choice of time-bin 
size is a compromise between i) combining separate peaks 
into one if a long-time bin is used (Type II error), ii) getting 
false positives co-occurrences of gamma activity if a long-
time bin is used (Type I error). This is a similar problem to 
how the optimum time histogram bin size in the study of 
neuronal spike trains is best determined [21]. For the 
purposes of capturing co-activated gamma events, we 
selected a time-bin of 50 ms, the maximum period of 
duration of two individual, overlapping low gamma cycles 
(~40Hz). In comparison, 30 ms peri-event time bins were 

used recently to investigate connectivity estimated from 
gamma event maxima [20]. 

E.  Generation of self-similarity matrices 

To determine similarity between spectro-spatiotemporal 
features of shingles we used the Jaccard index, a statistic 
used to compare the similarity of sample sets.  It is defined 
as the size of the intersection of the sets divided by the size 
of their union (1):  

 

J (A,B) = |A ∩ B| / |A ∪ B|       ( 1 ) 

 
The Jaccard index has been used in several applications of 
similarity search in a wide variety of domains including 
genome-scale clustering, web document similarity search, 
and molecular compound similarity search [22], [23]. Self-
similarity matrices have previously been studied for 
demonstrating periodicities in time-series and complex 
biological networks [24]. To generate self-similarity 
matrices, we perform an exhaustive, all-pairs similarity join 
of each binary matrix (L x F) shingle at each T, shown in 
gray in Figure 3. Thus, the self-similarity matrix was defined 
as an N x N matrix of all pairwise Jaccard similarity 
coefficients between all N. 

 

Figure 4.  Heatmap dendrogram of clustered self-similarity matrix 
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F.  Cluster Analysis 

We employ unsupervised cluster analysis of the ECoG 
data to accomplish motif discovery. Clustering has wide-
spread use in bioinformatics and recently, in 
neuroinformatics clustering has been applied to the discovery 
of functional networks in fMRI [25]. Hierarchical clustering 
more recently has been used in automated analysis of 
interictal spike clustering and classification and in EEG 
artifact removal [25]. The use of hierarchical clustering of 
large-scale ECoG spectro-spatiotemporal features has not 
been previously been reported. Agglomerative hierarchical 
clustering analysis of the ECoG binary codes was performed 
using the hclust package in R using single linkage clustering 
and the Jaccard self-similarity matrix [26].  

 

III. RESULTS 

A.  Generation of Self Similarity Matrix 

The generated self-similarity matrix for a 1.5 hr sample 
with time bin size of 50 ms measured 108,000 by 108,000 
and was a sparse matrix populated by > 60% zeros. Greater 
than 95% of values had a Jaccard index of less than 0.1.  

B.  Visualization of Cluster Analysis 

A 1-minute subsection of the self-similarity matrix 
containing a seizure was used for cluster analysis. We 
summarize the hierarchical clustering analysis of the self-
similarity matrix in a cluster dendrogram heatmap matrix in 
Figures 3 and 4. Two visually apparent clusters indicated 
within the red and yellow areas were found to contain time 
periods containing post-ictal seizure state activity and seizure 
state activity, respectively. A zoomed-in view of the yellow 
area of Figure 4 is shown in Figure 3, with the representative, 
corresponding dendrogram for a selected cluster of the data.  

 

IV. CONCLUSIONS 

We have demonstrated a novel fingerprinting method of 
spectro-spatiotemporal motifs occurring in ECoG data. We 
illustrated how clustered self-similarity matrices may be 
potentially useful for identifying ictal and post-ictal states by 
allowing for the rapid visual analysis of recurrent motifs 
within a long ECoG sample. 
 

REFERENCES 

[1] M. Helmstaedter and P. P. Mitra, “Computational methods and 

challenges for large-scale circuit mapping,” Current Opinion in 

Neurobiology, vol. 22, no. 1, pp. 162–169, Feb. 2012. 
[2] G. T. Einevoll, C. Kayser, N. K. Logothetis, and S. Panzeri, 

“Modelling and analysis of local field potentials for studying 

the function of cortical circuits,” Nat Rev Neurosci, vol. 14, no. 
11, pp. 770–785, Nov. 2013. 

[3] O. Sporns and R. Kötter, “Motifs in Brain Networks,” PLoS 

Biol, vol. 2, no. 11, p. e369, 2004. 
[4] C. Echtermeyer, L. da Fontoura Costa, F. A. Rodrigues, and M. 

Kaiser, “Automatic Network Fingerprinting through Single-

Node Motifs,” PLoS ONE, vol. 6, no. 1, p. e15765, Jan. 2011. 
[5] R. Milo, “Network Motifs: Simple Building Blocks of 

Complex Networks,” Science, vol. 298, no. 5594, pp. 824–827, 

Oct. 2002. 

[6] J. L. E. K. S. Lonardi and P. Patel, “Finding motifs in time 
series,” Proc. of the 2nd Workshop on Temporal Data Mining, 

pp. 53-68. 2002. 

[7] X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. Thornton Jr, 
“Migration motif: a spatial-temporal pattern mining approach 

for financial markets,” pp. 1135–1144, 2009. 

[8] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, and M. B. Westover, 
“Exact Discovery of Time Series Motifs.,” pp. 473–484, Jan. 

2009. 

[9] M. Kaiser, “Integrating temporal and spatial scales: human 
structural network motifs across age and region of interest 

size,” Frontiers in neuroinformatics, vol. 5 (2011). pp. 1–14, 

Jul. 2011. 
[10] J. S. Anderson, M. A. Ferguson, M. Lopez-Larson, and D. 

Yurgelun-Todd, “Reproducibility of Single-Subject Functional 

Connectivity Measurements,” American Journal of 
Neuroradiology, vol. 32, no. 3, pp. 548–555, Mar. 2011. 

[11] P. J. Uhlhaas and W. Singer, “Abnormal neural oscillations and 

synchrony in schizophrenia,” pp. 1–14, Jan. 2010. 
[12] C. S. Herrmann and T. Demiralp, “Human EEG gamma 

oscillations in neuropsychiatric disorders,” Clinical 

Neurophysiology, vol. 116, no. 12, pp. 2719–2733, Nov. 2005. 
[13] A. L. Ko, F. Darvas, A. Poliakov, J. Ojemann, and L. B. 

Sorensen, “Quasi-periodic fluctuations in default mode network 

electrophysiology.,” Journal of Neuroscience, vol. 31, no. 32, 
pp. 11728–11732, Aug. 2011. 

[14] D. Cheyne, “MEG studies of motor cortex gamma oscillations: 
evidence for a gamma ‘fingerprint’ in the brain?” Frontiers in 

human neuroscience 7 (2013). pp. 1–7, Oct. 2013. 

[15] P. Herman, G. Prasad, and T. M. McGinnity, “Comparative 
analysis of spectral approaches to feature extraction for EEG-

based motor imagery classification,” Neural Systems and 

Rehabilitation Engineering, IEEE Transactions on 16.4 (2008): 
317-326. 

[16] Erland S. Greenwood P.E., "Constructing 

 1/f noise from reversible Markov chains." Phys. Rev. E, 76, 
2007. 

[17] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A Survey of Binary 

Similarity and Distance Measures.,” Journal of Systemics, 
Cybernetics & Informatics, vol. 8, no. 1, 2010. 

[18] M. Le Van Quyen, J. Engel, et al. “Large-Scale Microelectrode 

Recordings of High-Frequency Gamma Oscillations in Human 
Cortex During Sleep” Journal of Neuroscience, vol. 30, no. 23, 

pp. 7770–7782, Jun. 2010. 

[19] J. Bourien, F. Bartolomei, J. J. Bellanger, M. Gavaret, P. 
Chauvel, and F. Wendling, “A method to identify reproducible 

subsets of co-activated structures during interictal spikes..” Clin 

Neurophys, vol. 116, no. 2, pp. 443–455, Feb. 2005. 
[20] F. Kheiri, A. Bragin, and J. Engel Jr, “Functional connectivity 

between brain areas..” Journal of Neuroscience Methods, vol. 

214, no. 2, pp. 184–191, Apr. 2013. 
[21] H. Shimazaki and S. Shinomoto, “A method for selecting the 

bin size of a time histogram.,” Neural Comput, vol. 19, no. 6, 

pp. 1503–1527, Jun. 2007. 
[22] A. Bender and R. C. Glen, “Molecular similarity: a key 

technique in molecular informatics,” Org. Biomol. Chem., vol. 

2, no. 22, p. 3204, 2004. 
[23] J. J. Jay, M. A. Langston, et al., “A systematic comparison of 

genome-scale clustering algorithms,” BMC Bioinformatics, vol. 

13, no. 10, p. S7, Jun. 2012. 
[24] X. Xu, J. Zhang, and M. Small, “Superfamily phenomena and 

motifs of networks.,” Proceedings of the National Academy of 

Sciences, vol. 105, no. 50, pp. 19601–19605, Dec. 2008. 
[25] P. Wahlberg and G. Lantz, “Methods for robust clustering of 

epileptic EEG spikes,” IEEE Trans. Biomed. Eng., vol. 47, no. 

7, pp. 857–868, 2000. 
[26] R. Ihaka and R. Gentleman, “R: a language for data analysis 

and graphics,”  Journal of computational and graphical 

statistics 5.3 (1996): 299-314. 
 

2660


