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Abstract — This paper presents results from a pilot 

experiment in which the technique of velocity selective recording 

(VSR) was used to identify naturally occurring 

electroneurogram (ENG) signals within the intact nerve of a rat. 

Signals were acquired using a set of electrodes placed along the 

length of the nerve, formed from simple wire hooks. This basic 

form of recording has already been applied in-vivo to the 

analysis of electrically excited compound action potentials 

(CAPs) in both pig and frog, however, this method has never 

before been used to identify naturally occurring neural signals. 

Results in this paper highlight challenges which must be 

overcome in order for the transition to be made from 

electrically evoked potentials to naturally occurring signals. 

I. INTRODUCTION 

The well understood relationship between nerve fibre 
diameter and conduction velocity (CV) was first described 
by Erlanger and Gasser in 1937 [1]. The time taken for an 
action potential to travel a known distance along an axon can 
be accurately measured and used to calculate the intrinsic 
conduction velocity of the axon. While it is possible to 
calculate CV using only a single pair of electrodes (a dipole) 
it has been shown that the velocity selectivity of a system can 
be increased by using multiple electrodes [2]. The use of 
velocity selective recording (VSR) enables discrimination of 
action potentials based both on direction of propagation 
(afferent or efferent) and CV, without the need to submit the 
nerve to invasive and potentially damaging procedures [3], 
[4]. This method provides a viable interface for neural 
recording systems that have potential use in a range of 
prosthetic devices. In addition, information about conduction 
velocity is potentially useful for neuroscientists wishing to 
study nerve conduction disorders. 

Velocity discrimination has the potential to extract useful 
physiological information, such as bladder fullness [5]. 
However, although multiple electrode cuffs (MECs) have 
been used to record electrically evoked compound action 
potentials (CAPs) [6], [7], VSR has, until now, not been 
demonstrated with naturally-occurring neural signals. This 
paper presents experimental data that supplements and 
extends earlier work using CAPs as described in [6] and [7] 
and provides the first practical demonstration of the 
application of VSR to naturally-occurring ENG. Unlike the 
recordings reported in [2] – [4] which use MECs, the 
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experiments described in this paper used an array of hook 
electrodes. This allowed individual ENG spikes to be 
observed and counted, providing verification for the VSR 
process. This work is described in a companion paper [12].  

II. EXPERIMENTAL METHODS 

A. Recording Setup 

A recording array comprising of a set of tungsten wire 
hooks was used to record neural signals from an intact nerve 
within a dorsal root of a rat. The resulting data were 
amplified and filtered before being stored for offline 
analysis. During the course of the experiment modulation of 
the neural signals was elicited by stimulating the L5 
dermatome both manually (via direct cutaneous stimulation) 
and electrically (via a single wire electrode). 

B. Recording and Stimulation Electrodes 

The recording electrode was fabricated on site and 
contained a total of six hooks supported by a clamp stand. 
Each hook was formed from 0.2 mm diameter tungsten wire, 
fed through a polyurethane tube of 0.4 mm (internal) 
diameter. The wire was supported within each tube by an 
application of cyanoacrylate adhesive at each end. The hooks 
were formed at one end by winding around a pre-existing 
cylinder of 4 mm diameter; the shape of each hook was 
maintained by the rigidity of the wire. The total length of the 
electrode array was 5 mm.  

C. Surgical Procedure 

All animal procedures were performed in accordance with 

the United Kingdom Animal (Scientific Procedures) Act 

1986. An adult female Sprague Dawley rat (250 grams) was 

anaesthetised with 1.5 g/kg urethane (Sigma) administered 

by the intraperitoneal route. The dorsal spinal cord was 

exposed via a laminectomy of three of the lumbar spinal 

vertebrae. The dorsal skin was sutured to an overhanging 

rectangular bar, creating a contained pool into which non-

conductive mineral oil was poured. The dura was incised to 

expose the dorsal roots. 

The left fifth lumbar dorsal root (L5) was teased apart into 

fine fascicles with fine glass pulled pipettes, in a method 

described previously [8]. One fascicle, that was 

approximately 100 µm in diameter, was placed over all of 

the hooks in the array. The electrodes were arranged in a 

bipolar configuration (Fig. 1) for connection to the recording 

set-up (Digitimer, UK) and the animal was suitably 

electrically grounded. The six hooks were connected to five 
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respective pre-amplifier head-stages (Neurolog NL100), 

following the direction of action potential propagation. For 

each head-stage the signal was pre-amplified 1000 times 

using an AC coupled amplifier (Neurolog NL104A) fed 

through a 50 Hz noise eliminator (Humbug, Quest Scientific, 

Canada) and amplified 10 times further (Neurolog NL106) 

before band pass filtering at 200-5000 Hz. The total system 

gain was 10,000. Stimulation was applied by lightly brushing 

the L5 dermatome, or by applying a 1 mA square wave 

current pulse (width 1 ms) that also triggered the recording. 

An increase in afferent activity was visually observable in 

the concurrent recordings during cutaneous stimulation. A 

number of different fascicles that were teased from the L5 

root were examined for afferent activity before selection of a 

single fascicle was made. 

D. Recording Electronics & Data Analysis 

The amplified and filtered signal was passed to a set of 

high speed ADCs (NI9222 mounted in cDAQ-9178 by 

National Instruments, Austin, TX, USA) providing 

simultaneous sampling of all five bipolar recordings at a 

maximum sample rate of 500 kS/s and a digital resolution of 

16 bits. The maximum analogue input range was +/- 10V. 

The converters were connected to a laptop computer running 

LabView 2010 that logged each channel into a set of data 

files for offline analysis. Online visual verification was 

provided by connecting a set of oscilloscope channels in-line 

with the converter which provided a means to examine each 

recording in real time for artefacts or noise. Offline data 

analysis was performed using MATLAB R2012b (The 

MathWorks, Natick, MA, USA). 

 

A simple process called delay-and-add was used to extract 

the basic velocity information from the raw data, the 

recordings lasting 250 ms [3], [9]. The channels are delayed 

relative to the first channel VB1 by an interval that depends on 

both the electrode spacing and the propagation velocity of 

the signal. So if the delay between the first two channels 

(VB1, VB2) is dt the delay between the first and third channels 

(VB1, VB3) is 2∙dt and so on. Delay-and-add operates by 

inserting variable delays into the channels to effectively 

cancel the naturally occurring delays after which the 

channels are summed resulting in a single signal VD (1)  

 

(1) 

  

 

The value of dt can now be swept for the range of 

velocities that are of interest. For each value of dt the 

maximal value of VD is found which can then be used to 

construct a velocity profile or intrinsic velocity spectrum 

(IVS). The sample rate was 500 kS/s and so the values of dt 

must all be integer multiples of 2 μs. Inspection of the 

biologically plausible range of velocities (0 m s
-1 

- 100 m s
-1

) 

showed the main populations to be in the range of 5 m s
-1

 - 

20 m s
-1

. The sampling rate used is considerably higher than 

in previous work and so there is no requirement to 

interpolate the data [6]. It should be noted that the 

relationship between the delay size dt and the velocity is not 

linear and so there is greater resolution at lower velocities 

[9]. Note that it is possible to use negative values of dt which 

provides a method to examine negative velocities. During 

recordings it is therefore possible to extend this method to 

detect and analyse action potentials which are propagating in 

both directions along the nerve. 

III. RESULTS 

A. Surgical Issues 

Initially a larger electrode array was trialled with an 
electrode spacing of 3 mm and utilising thicker tungsten wire 
(0.5 mm). Larger electrode spacing should provide improved 
selectivity as the delay dt required becomes much larger than 
the sampling interval. However the electrodes were found to 
be very inflexible and difficult to produce with uniform 
shapes. It was difficult to lift a large enough section of nerve 
into the hooks without accidentally damaging the nerve. 
Also, once the nerve was located in the hooks it proved 
challenging to establish a reliable contact between the nerve 
and the surface of each electrode. The inflexible geometry of 
the electrodes and the relative rigidity of the nerve (due to 
stretching tension) prevented the nerve from sitting 
satisfactorily on all of the electrodes. 

𝑉𝐷 𝑡, 𝑑𝑡 =   𝑉𝐵𝑖(𝑡(𝑖 − 1) ∙ 𝑑𝑡)

5

𝑖=1
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Figure 2: Recorded action potential after bipolar amplification showing 

propagation in time. The dashed line indicates a propagation time 

corresponding to a velocity of 12.5 m s-1. 

 
 

Figure 1: Simplified sketch of the amplifier configuration used to 

extract five bipolar signals from six electrode contacts. 
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The smaller electrode array described previously 
provided significantly more success. The electrode spacing 
of 1 mm produced a much shorter array (5 mm) reducing 
both the surgical and mechanical constraints on locating the 
nerve in the hooks. Each hook was flexible and so the weight 
of the nerve naturally aligned each hook to follow the 
contour of the nerve, resulting in a reliable physical contact 
between the two. 

B. Data Analysis  

Recordings were made during periods of stimulation (both 

cutaneous and electrical) and during a resting period where 

no direct stimulation was applied to the animal. A single 

action potential as recorded during a resting phase (Fig. 2) 

was chosen for analysis of the system characteristics. The 

input-referred noise floor was measured using a period of no 

activity and ranged from 4.04 μVrms to 7.31 μVrms per 

channel, the peak to peak signal values were in the range of 

33.34 μVpp to 65.49 μVpp. The velocity of the single action 

potential (Fig. 2) was estimated manually by measuring the 

relative delay from peak-to-peak over each channel. The 

inter-channel delay ranged from 62 μs to 96 μs with an 

average delay value of 80 μs and the inter-electrode distance 

was 1 mm, therefore the velocity of this action potential was 

approximately 12.5 m s
-1

 (2).  

 

 

(2) 

 

 

The variation in inter-channel delay can be explained by 

the non-uniform spacing of the hook electrodes which 

deform slightly under the weight of the nerve. The delay-

and-add procedure essentially averages this variation and the 

effect is negated for larger numbers of electrodes. The IVS 

of the action potential (Fig. 3) was generated using the delay-

and-add procedure which computes responses for fixed delay 

values, thus any variance from channel to channel appears as 

a spreading in the velocity domain. The action potential has 

a finite bandwidth (in the frequency domain) and this also 

produces a spreading in the velocity domain, reducing the 

ability of the system to discriminate one velocity from 

another. We quantify this spreading using the velocity 

quality factor, Qv which is given by [2] (3).  

 

(3) 

 

 

Where v0 is the peak velocity and v3+ and v3- are the 

velocities at which the summed output has dropped to -3dB 

of the peak value. For the single action potential (Fig. 3) the 

quality factor was 1.48. Various methods exist to improve 

the velocity selectivity; such as the use of band pass filters 

[3] and neural networks [10]. 

 

C. Electrical & Cutaneous Stimulation 

Both electrical and cutaneous stimulation was applied to 

the L5 dermatome in an attempt to elicit a response within 

the fascicle. Firstly a 1 mA square wave pulse was applied 

using a single wire electrode. The IVS was  computed from a 

5 ms recording taken directly after the application of the 

stimulus pulse (Fig. 4), showing a high level of activity 

centred on 10.2 m s
-1

 with a quality factor of 1.22.  

Two full length recordings (250 ms) were made 

sequentially with and without manual cutaneous stimulation 

applied to the skin. The velocity spectra of the two 

recordings (Fig. 5) clearly show the presence of a number of 

dominant velocity populations. The resting spectrum features 

two distinctive peaks at 10 m s
-1

 and 13 m s
-1

 respectively 

with similar maximum amplitudes. During cutaneous 

stimulation there is a large increase in the maximum 

amplitude at a velocity of 10 m s
-1

, which is in agreement 

with the changes observed during electrical stimulation of 

the L5 dermatome. Activity at 13 m s
-1

 has decreased and a 

new peak is visible at 16 m s
-1

. 
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Figure 3: Intrinsic Velocity Spectrum calculated for a single action 

potential using the delay-and-add process. The peak velocity is ~12.5 

m s-1 with a quality factor of 1.48. 
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Figure 4: Intrinsic velocity spectrum for 5ms of electrically evoked 

recording with a distinct peak at 10.2 m s-1 and a Qv value of 1.22. 
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IV. DISCUSSION 

We obtained velocity profiles from both electrically 

evoked and physiological action potentials within rat. The 

intrinsic velocity selectivity was constrained by the space 

available to locate the recording electrodes. Various different 

electrode geometries were evaluated in an attempt to 

maximise the quality and effectiveness of the recordings. 

Distinct action potentials were recorded along each 

electrode array although there was some variation in 

amplitude. Two possible explanations for this latter effect 

are (i) subtle variations in the amplifier gains (from one 

channel to another) or, (ii) the possible variation in external 

resistance along the length of the fascicle which can affect 

the amplitude of recorded signals [11]. Unlike in the case of 

cuff electrodes the position of the nerve within the hooks is 

not constrained and so it is likely that the electrode contact 

impedance was not completely consistent from one contact 

point to another. 

No further filtering or averaging was required as the 

signal-to-noise ratio of the data was already very high. There 

was no observable common mode interference and so the use 

of a tripolar configuration (which reduces common mode 

interference [11]) was not warranted. In addition, the 

availability of high speed data acquisition hardware meant 

there was no requirement to interpolate the data. 

We were able to observe noticeable changes in the 

velocity spectra of recordings made from the same nerve 

when either electrical or cutaneous stimulation was applied 

and the changes were consistent from one recording to 

another. As the delay-and-add process only takes the 

maximum value over the entire time recording there is no 

temporal information extracted. This approach is well suited 

to the study of electrically evoked CAPs where there is 

inherent time synchronisation but it does not extend well to 

the analysis of naturally occurring neural signals where 

action potentials of different velocities are generated 

randomly and key data is encoded in the firing rate. 

V. CONCLUSION 

The method of VSR was applied to naturally occurring 

neural signals of a rat in-vivo. The physiological recordings 

had much lower amplitudes than electrically evoked CAPs.  

Velocity profiles were obtained for background activity as 

well as for manual and electrical stimulation of the L5 

dermatome. It was possible to identify periods of stimulation 

based on changes within the velocity spectra. The method 

was able to identify physiological nerve activity but did not 

produce any measure of the firing rate for particular neurons, 

which is of interest for advanced neural prostheses. A 

method for extracting neuronal firing rates using VSR has 

been proposed by the authors [12]. 
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Figure 5: Intrinsic velocity spectrum for 250 ms long recordings. 

The dotted line indicates cutaneous stimulation was applied, the 

solid line indicates no stimulation was applied. 
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