
  

  

Abstract— One of the most interesting applications of brain 
computer interfaces (BCIs) is movement prediction. With the 
development of invasive recording techniques and decoding 
algorithms in the past ten years, many single neuron-based and 
electrocorticography (ECoG)-based studies have been able to 
decode trajectories of limb movements. As the output variables 
are continuous in these studies, a regression model is commonly 
used. However, the decoding of limb movements is not a pure 
regression problem, because the trajectories can be apparently 
classified into a motion state and a resting state, which result in 
a binary property overlooked by previous studies. In this 
paper, we propose an algorithm called logistic-weighted 
regression to make use of the property, and apply the algorithm 
to a BCI system decoding flexion of human fingers from ECoG 
signals. Our results show that the application of logistic-
weighted regression improves decoding performance compared 
to the application of linear regression or pace regression. The 
proposed algorithm is also immensely valuable in the other 
BCIs decoding continuous movements. 

I. INTRODUCTION 

Brain computer interfaces (BCIs) decode brain signals 
enabling people to control devices without muscular 
movement. Because BCI systems provide a direct 
communication pathway between the brain and an external 
device, they are of great help to people with severe paralysis. 
One of the most important applications of BCIs is to assist 
people who have disrupted neuromuscular channels through 
which the brain communicates with and controls its external 
environment by reproducing their motor functions with a 
cursor or a robotic arm [1]. Thanks to the progress of 
invasive recording techniques and decoding algorithms in the 
past ten years, many single neuron-based and 
electrocorticography (ECoG)-based studies have been able to 
decode continuous trajectories of limb movements. Unlike 
traditional BCIs reviewed in [2–4] which classify discrete 
brain states, these studies require prediction of continuous 
variables. In other words, they belong to regression problems 
rather than classification problems. 

The simplest and most robust solution to the regression 
problem is to linearly model the relationship between brain 
signals and limb movements. This linear relationship can be 
established using linear regression or its variants, including 
pace regression [5], ridge regression [6], or time-embedded 
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linear Wiener filter [7–10]. To take into account the 
physiological, physical, and mechanical constraints that 
affect the flexion of limbs, some studies applied switching 
models [11] or Bayesian models [12,13] to the results of 
linear regressions above. Other studies have explored the 
utility of non-linear methods, including neural networks [14–
17], multilinear perceptrons [18], and support vector 
machines [18], but they tend to have difficulty with high 
dimensional features and limited training data [13]. 

Nevertheless, the studies of limb movement translation 
are in fact not pure regression problems, because the limbs 
are not always under the motion state. Whether it is during an 
experiment or in the daily life, the resting state of the limbs is 
usually as long as their motion state, if not longer. In this 
case, the recorded movement data will exhibit a binary 
property, which was not made the best of in the studies 
introduced above. Given the binary property, the limbs may 
obey different models under the two different states, and it is 
unreasonable to estimate the limb trajectories without 
distinguishing between the two states. A possible negative 
effect was shown in “an interesting observation” of [15], in 
which the estimated hand trajectory showed high correlation 
with the actual one when a primate performed a movement, 
while the correlation diminished when its arm was in the 
resting state. 

In this paper, we propose a novel algorithm named 
logistic-weighted regression to synthesize the binary 
information and the continuous information of the movement 
data. First, with real data, we illustrate the significance of 
exploiting the above-mentioned binary property. Second, we 
prove the statistical principles of the proposed algorithm on 
the basis of the law of total expectation. Finally, we compare 
the results of the algorithm with those of two existing popular 
methods. 

II. METHODS 

A. Data Collection 
The BCI Competition IV dataset collected by Kubanek et 

al. [5] is employed for this study. Three patients with 
intractable epilepsy had electrode arrays on the surface of the 
brain for the purpose of localization of seizure foci prior to 
surgical resection. Each subject had a 48- or 64-electrode 
array placed over the frontal-parietal-temporal region 
including parts of sensorimotor cortex. During the 
experiment, the patients were asked to move specific 
individual fingers in response to visual cues. The subjects 
typically flexed the indicated finger 3-5 times during a 1.5-3 s 
time period, and then rest for 2 s. The ECoG signals from the 
electrodes were amplified, band-pass filtered between 0.15 
and 200 Hz, digitized at 1 kHz and recorded in a general 
purpose BCI2000 system [19]. The flexion of each finger was 
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measured and digitized in 12 bit and 25 Hz by a data glove 
(5DT Data Glove 5 Ultra, Fifth Dimension Technologies, 
Inc.). 

B. Feature Extraction 
First, bad channels (channels with abnormal spikes) were 

manually omitted. As a result, Channel 55 of Subject 1 and 
Channel 21, 38 of Subject 2 were removed. Second, a common 
average reference (CAR) montage was performed on all 
channels [5]. Then the features below were extracted from 
every channel to compose the feature vector 𝜱𝜱: 

• Average frequency-domain feature: As proposed by 
Sanchez et al., sensorimotor ECoG dynamics are 
shown in sub-bands (1-60Hz), gamma band (60-
100Hz), fast gamma band (100-300Hz) and ensemble 
depolarization (300-6000Hz) [20]. We extracted the 
spectral amplitudes in particular frequency ranges: 5-
15 Hz, 20-25 Hz, 75-115 Hz, 125-160 Hz, and 160-
175 Hz. The 35-70 Hz frequency range was 
abandoned, because it had been demonstrated to 
reflect conflicting spectral phenomena [21]. 

• Local motor potential (LMP) feature: the mean value 
of the raw unrectified time-domain signal. 

• Variance feature: the variance of the raw unrectified 
time-domain signal. 

A moving window of 80 ms in length with 40 ms 
overlapping was used when extracting all the features above. 
Since the sampling rate of the data-glove is 25 Hz, the features 
have the same length of the data-glove's position 
measurements. 

C. Logistic-weighted Regression 
The main characteristic of the finger flexion data is that it's 

approximately binary, as is shown in Fig. 1. Since the features 
described above don't have a similar binary property, a 
traditional linear regression cannot fit the finger flexion data 
very well. As is shown in Fig. 2, the huge fluctuation of the 
target variable make the linear regression result full of 
oscillations. 

 
Figure 1.  Real finger flexion time course of Subject 1's thumb. 

 
Figure 2.  Finger flexion time course of Subject 1's thumb predicted by 

linear regression. 

On the other hand, since the finger flexion data is 
approximately binary, a threshold can be manually set to easily 
classify it into two states (motion and non-motion, Fig. 3). 
Because the natural flexion or extension of fingers are limited 
to certain ranges due to the physical constraints of our hands 
[12], the threshold is very robust. After the classification the 
target variable becomes entirely binary, as a result of which a 
logistic regression can be used to estimate the probability that 
a time bin belongs to the motion state. The result of the logistic 
regression exhibits much more binary information than that of 
the linear regression (Fig. 4), but it loses all the information 
within each state. 

 
Figure 3.  Classification result of Subject 1's thumb with a threshold of 1.4. 
Class 1 represents the motion state, while class 0 represents the non-motion 

state. Neighbouring labels of class 1 were combined within every 4 s to 
cancel noise. 

 
Figure 4.  Logistic regression result of Subject 1's thumb using binary 

labels as the target variable. 

Therefore, a better strategy is to combine the two methods. 
In the algorithm called logistic-weighted regression, we 
weight the linear regression results with the logistic regression 
results on the basis of the law of total expectation. 

Based on the two states of a certain finger, a pair of mutual 
exclusive hypotheses for each time point can be established: 

 
𝐻𝐻0: The finger is under the non-motion state
𝐻𝐻1: The finger is under the motion state          (1) 

If 𝐻𝐻0 is true, the optimal estimate of the finger flexion 𝑦𝑦 
(the conditional expectation 𝐸𝐸(𝑦𝑦|𝐻𝐻0)) will be 0; If 𝐻𝐻1 is true, 
the optimal estimate of the finger flexion 𝑦𝑦 (the conditional 
expectation 𝐸𝐸(𝑦𝑦|𝐻𝐻1)) will be the linear regression result 𝑦𝑦�. 

In logistic regression, the regression result 𝑦𝑦�𝑙𝑙 is the 
posterior probability of accepting 𝐻𝐻1, which can be written as 
a logistic sigmoid acting on a linear function of the feature 
vector 𝜱𝜱 [22]: 

 𝑦𝑦�𝑙𝑙 = 𝑝𝑝(𝐻𝐻1|𝜱𝜱) = 𝜎𝜎(𝒘𝒘𝑇𝑇𝜱𝜱) (2) 

where 𝒘𝒘 is the optimal weight vector and 𝜎𝜎(∙) is the logistic 
sigmoid function. Since 𝐻𝐻0 and 𝐻𝐻1 are mutual exclusive, 
𝑝𝑝(𝐻𝐻0|𝜱𝜱) = 1 − 𝑝𝑝(𝐻𝐻1|𝜱𝜱). 

Combining the estimates under the two hypotheses and 
their corresponding probabilities, the result of the logistic-
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weighted regression 𝑦𝑦�𝑙𝑙𝑙𝑙 is the total expectation of the finger 
flexion. According to the law of total expectation, it is 

𝑦𝑦�𝑙𝑙𝑙𝑙 = 𝐸𝐸(𝑦𝑦) = 𝐸𝐸(𝑦𝑦|𝐻𝐻1)𝑝𝑝(𝐻𝐻1|𝜱𝜱) + 𝐸𝐸(𝑦𝑦|𝐻𝐻0)𝑝𝑝(𝐻𝐻0|𝜱𝜱)
= 𝑦𝑦�𝑦𝑦�𝑙𝑙 + 0 × (1 − 𝑦𝑦�𝑙𝑙) = 𝑦𝑦�𝑦𝑦�𝑙𝑙                                

 (3) 

which is the linear regression result weighted by the logistic 
regression result. 

In the linear regression, the target variable is the real finger 
flexion data, for which the measurement error of the data-
glove can be neglected. However, in the logistic regression, 
the target variable is the binary labels 𝑡𝑡 ∈ {0,1} classified with 
manually set thresholds, as a result of which the classification 
error has to be taken into consideration. Within the process of 
the logistic regression, the error of the target variable 𝑡𝑡 is 
propagated to the weight vector 𝒘𝒘, and finally the regression 
result 𝑦𝑦�𝑙𝑙. In tradition, the regression result with error should be 
represented as 𝑦𝑦�𝑙𝑙(1 ± 𝛿𝛿). However, since 𝑦𝑦�𝑙𝑙 is a posterior 
probability satisfying the restriction 0 ≤ 𝑦𝑦�𝑙𝑙 ≤ 1 in the case of 
logistic regression, 𝑦𝑦�𝑙𝑙(1 ± 𝛿𝛿) is no more a proper form for its 
potential to exceed the restriction. Therefore, the error-
including result is alternatively written as 𝑦𝑦�𝑙𝑙

1±𝛿𝛿 . 

Assuming 𝛼𝛼 = 1 ± 𝛿𝛿, the final expression of the logistic-
weighted regression result will be 

 𝑦𝑦�𝑙𝑙𝑙𝑙 = 𝑦𝑦�𝑦𝑦�𝑙𝑙
𝛼𝛼 ,𝛼𝛼 > 0 (4) 

where the error-correction coefficient 𝛼𝛼 is optimized via cross-
validation. 

The predicted flexion of the same finger as the former 
figures given by the logistic-weighted regression is shown in 
Fig. 5. In this case, 𝛼𝛼 is set to be 1 (default value) without 
optimization. It is obvious that even without error correction 
the logistic-weighted regression result has already been much 
better than the linear regression result, and very close to the 
real flexion data. 

 
Figure 5.  Finger flexion time course of Subject 1's thumb predicted by 

logistic-weighted regression. 

D. Least Mean Square (LMS) Adaptive Filtering 
In order for the regression results to further imitate the 

time-domain characteristics of the finger flexion, an FIR 
adaptive filter was trained on the training data with the LMS 
algorithm [23]. The resulting filters were used to filter the 
testing regression results. The adaptive filter lengths and the 
LMS step sizes were optimized via cross-validation. 

III. RESULTS 

The original dataset consists in a 10-min recording per 
subject. We set apart the first 33.3% of each recording 
(200,000 samples) as the testing set to evaluate the algorithms, 
and the remaining 66.7% (400,000 samples) functioned as the 
training set. The error-correction coefficient of the logistic 

regression and the parameters of the adaptive filtering were 
optimized via 5-fold cross-validation within the training set. 

To compare the algorithm with the existing methods, we 
also implemented linear regression and pace regression (part 
of the Java-based Weka package [24]), with which logistic-
weighted regression was respectively replaced in the full 
procedure. The performances of these methods were evaluated 
based on the correlation between the real finger flexions within 
the testing set and the corresponding flexions predicted by 
different methods. As is shown in Table I, the decoding 
performance of logistic-weighted regression is better than 
those of the other methods, whether it is for every single finger, 
every single subject or the overall average. 

TABLE I.  CORRELATION COEFFICIENTS BETWEEN REAL FINGER 
FLEXIONS AND FINGER FLEXIONS PREDICTED BY LINEAR REGRESSION (A), 

PACE REGRESSION (B) AND LOGISTIC-WEIGHTED REGRESSION (C). 

Subjects Thumb Index Middle Ring Little Avg. 
(A) Linear regression 

Sub. 1 0.5058 0.7091 0.2597 0.5077 0.3768 0.4718 
Sub. 2 0.5696 0.3053 0.3307 0.4541 0.3481 0.4016 
Sub. 3 0.6868 0.6582 0.5948 0.6005 0.6521 0.6385 
Avg. 0.5874 0.5575 0.3951 0.5208 0.4590 0.5040 

(B) Pace regression 
Sub. 1 0.5235 0.7231 0.2861 0.5194 0.3924 0.4889 
Sub. 2 0.5565 0.3055 0.3413 0.4677 0.3610 0.4064 
Sub. 3 0.6952 0.6782 0.6159 0.6109 0.6422 0.6485 
Avg. 0.5917 0.5689 0.4144 0.5327 0.4652 0.5146 

(C) Logistic-weighted regression 
Sub. 1 0.5968 0.7621 0.2958 0.4982 0.4901 0.5286 
Sub. 2 0.7012 0.4185 0.4438 0.5054 0.5150 0.5168 
Sub. 3 0.8086 0.7005 0.6341 0.6170 0.7760 0.7072 
Avg. 0.7022 0.6270 0.4579 0.5402 0.5937 0.5842 
 

In order to show the advantage of the algorithm in details, 
an excerpt of real finger flexions and predicted finger flexions 
within the testing set is shown in Fig. 6. It is obvious in the 
figure that, compared with the other two methods, logistic-
weighted regression gives a much better estimate during the 
non-motion state of the finger without losing the sensitivity of 
detecting movements. This is because logistic regression 
generates a small probability of movement when a finger is 
resting in reality, and by weighting the linear regression result 
with the probability, the oscillations appearing in the non-
motion phases of Fig. 6(a) and Fig. 6(b) are greatly suppressed. 

IV. DISCUSSION & CONCLUSION 

This article proposed a new method of decoding ECoG 
signals for the prediction of finger flexion in human beings. 
The decoder, based on logistic-weighted regression, has been 
evaluated in the BCI Competition IV dataset, and showed 
advantages over two typical methods both qualitatively and 
quantitatively. In particular, the combination of linear 
regression and logistic regression based on the law of total 
expectation enabled a much better estimate of the finger 
flexion during its non-motion state. 

Besides, another advantage of the proposed method is its 
simple algorithm structure and low computational burden 
compared with models assembling prior knowledge and non-
linear methods, which make it more tractable for real-time 
applications. Last but not least, the logistic-weighted 
regression has the potential to be cooperative with and 
improved by a lot of existing methods. As was introduced in 
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the Introduction section, modifications like [11–13] are 
directly based on the results of a linear regression. Since the 
logistic-weighted regression is able to replace a linear 
regression in any decoder, it is likely to further improve the 
performance of these modifications. 

 
Figure 6.  Real finger flexions and finger flexions predicted by linear 

regression (a), pace regression (b) and logistic-weighted regression (c). The 
excerpt is from the testing set of Subject 1's thumb between 120s and 170s. 

There are some directions in which this work could be 
further improved. On one hand, some physiological, physical, 
and mechanical constraints can be introduced to make the 
algorithm more grounded in reality. For example, in the 
experiments of Kubanek et al. [5], subjects were dictated to 
move only one finger at a time, in which case the sum of the 
motion probabilities of the five fingers predicted by logistic 
regressions should be restricted to not exceed one. On the other 
hand, it is worthwhile to explore the potential for combining 
logistic regression with the variants of linear regression, such 
as pace regression, ridge regression, and time-embedded linear 
Wiener filter. 
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