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Abstract— Mathematical models of the neuronal activity in
the affected brain regions of Essential Tremor (ET) and Parkin-
son’s Disease (PD) patients could shed light into the underlying
pathophysiology of these diseases, which in turn could help
develop personalized treatments including adaptive Deep Brain
Stimulation (DBS). In this paper, we use an Ornstein Uhlenbeck
Process (OUP) to model the neuronal spiking activity recorded
from the brain of ET and PD patients during DBS stereotactic
surgery. The parameters of the OUP are estimated based on
Inter Spike Interval (ISI) measurements, i.e., the time interval
between two consecutive neuronal firings, by means of the
Fortet Integral Equation (FIE). The OUP model parameters
identified with the FIE method (OUP-FIE) are then used to
simulate the ISI distribution resulting from the OUP. Other
widely used neuronal activity models, such as the Poisson
Process (PP), the Brownian Motion (BM), and the OUP whose
parameters are extracted by matching the first two moments
of the ISI (OUP-MOM), are also considered. To quantify
how close the simulated ISI distribution is to the measured
ISI distribution, the Integral Square Error (ISE) criterion is
adopted. Amongst all considered stochastic processes, the ISI
distribution generated by the OUP-FIE method is shown to
produce the least ISE. Finally, a directional Wilcoxon signed
rank test is used to show statistically significant reduction in
the ISE value obtained from the OUP-FIE compared to the
other stochastic processes.

Index Terms— Neuronal Activity Modeling, Inter-Spike In-
terval, Ornstein-Uhlenbeck Process, Fortet Integral Equation,
Poisson Process, Inverse Gaussian Distribution.

I. INTRODUCTION

Essential Tremor (ET) and Parkinson’s Disease (PD) are
progressive, chronic neurological disorders of the central ner-
vous system that impair motor skills. The exact underlying
pathophysiology of these diseases is unknown. The treatment
of these diseases consists of either medication therapies or
surgical procedures such as Deep Brain Stimulation (DBS).
DBS involves high frequency electrical stimulation through
implanted electrodes to the ventral intermediate nucleus
(VIM) of the thalamus in case of ET/PD, or to the inter-
nal segment of the Globus Pallidus (GPi) or Subthalamic
Nucleus (STN) in case of PD. DBS helps to control some
of the most debilitating symptoms of these diseases but
its underlying mechanisms are still unclear. In our group,
we aim to design the next generation of DBS systems in
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which the stimulation is continuously adapted to the patients’
condition [1]. One step towards this ambitious goal is to
develop a simple yet accurate mathematical model of the
neuronal activity in the part of the brain where DBS is
applied [2]. Mathematical modeling of the spiking activity in
ET and PD patients could also be useful in understanding the
pathophysiology of these diseases as well as the underlying
mechanism of DBS.

In this work we use the Ornstein Uhlenbeck Process
(OUP) to model the neuronal spiking activity recorded during
DBS stereotactic surgery from the VIM and STN of ET and
PD patients, respectively. The OUP is a modified Wiener
Process based on leaky integration assumption [3] that can
model the randomness of the Inter Spike Interval (ISI), the
time interval between two consecutive neuronal firings. It
captures the spike generation mechanism, which is ignored
in a simplistic model like the Poisson Process (PP), and also
accounts for the change in membrane potential between two
firing events, unlike in Brownian Motion (BM) models [4].
The OUP requires only two dynamic parameters, together
with three intrinsic parameters of the neuron, which reduces
the computational complexity compared to other models
(please refer to [2] and references therein).

The OUP has been successfully applied to model the
neuronal activity in animal and human models [5]. In [2],
[6], the OUP was used to model the spiking activity recorded
from VIM and STN of an ET and a PD patient, respectively.
Although, the study considered very limited patients data, to
the best of our knowledge, it was the first to show that OUP
can be used to model the spiking activity measured in-vivo
from PD and ET human subjects. In [2], [6], the measured
ISI was used to estimate the first two moments of the
First Passage Time (FPT) distribution, i.e., the distribution
of the first time the neuron membrane potential exceeds
a certain threshold starting from some initial resting state
at which point the neuron generates an action potentials
or spike [7]. The OUP with the parameters extracted with
this “moment method” method (indicated in the rest of the
paper as OUP-MOM) was simulated and the resulting ISI
distribution estimated. To quantify whether the simulated ISI
distribution well approximates the measured ISI distribution,
an Integral Square Error (ISE) criterion was adopted. The
resulting ISI distribution from the OUP-MOM was shown
to produce the smallest ISE compared to PP and BM. A
Kolmogorov-Smirnoff test further showed a higher likelihood
that the measured ISI samples were drawn from the simulated
ISI distribution based on the OUP-MOM, than from the
simulated ISI distribution based on PP or BM.
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Fig. 1: Sample of recorded data set over a window of
1 sec with spike thresholding. The dotted line represents the
threshold set by the physician.

The goal of this paper is two-fold: (1) propose an es-
timation method for the OUP parameters that reduces the
ISE compared to the OUP-MOM method [2], [6] and (2)
show that this ISE reduction is statistically significant by
examining a large number of human subjects. In this paper
we use the OUP to model the ISI distributions of 19 VIM
and 10 STN neuronal firings measured during DBS surgery
from 5 ET and 6 PD patients, respectively. We propose to
extract the two dynamic parameters of the OUP by means
of the Fortet Integral Equation (FIE), which is based on the
minimization of maximum Kolmogorov Smirnov statistical
error for the integral equation [8], [9]. In the rest of the
paper, OUP-FIE will indicate the OUP with the parameters
extracted using this FIE method. We then proceed as in [2],
[6] to compare OUP-FIE, OUP-MOM, PP and BM based
on the ISE criterion. The ISE is calculated as the sum of
the squared error between measured ISI distribution and
numerically simulated ISI distribution at each bin. We show
that the model parameter estimated based on the FIE method
gives overall better results compare to the moments method.
Statistical comparison of the performance of OUP-FIE,
OUP-MOM, PP and BM by using the directional Wilcoxon
signed rank test [10] shows that the OUP-FIE provides the
best curve fit to measured ISI distributions in both ET and
PD patients.

The paper is organized as follows. Section II describes the
data set and outlines the parameter extraction for the OUP-
FPT, followed by a discussion on parameter identification
for OUP-MOM, PP and BM. Section III shows the superior
performance of OUP-FPT according to the ISE criteria
and the directional Wilcoxon signed rank test. Section IV
concludes the paper.

II. MODELING

A. Data Set

Pre-DBS, during-DBS and post-DBS micro-electrode
recordings (MER), performed to precisely locate an optimal
DBS target by assessing neuronal spiking activity at different
depths in the brain, were obtained from surgeries done at the
University of Illinois at Chicago and the Rush University
in Chicago, with respective IRB approvals. MER measures
the electrical potential differences across the cell membrane
to analyze the high-frequency activities of a single neuron.
There are two major sources of noise in recordings: one
is due to the cellular activities of neighboring neurons,

which cannot be removed, and the other is due to the
stimulation artifact present in MER data when a train of high
frequency DBS pulses is applied through the macro contact
of the micro-electrode assembly. The artifact template was
subtracted from recorded signals to recover the neuronal ac-
tivities but the spiking activities embedded inside the artifact
could not be recovered due to saturated signal amplification.
The occurrence of spike timestamps was calculated based
on visual threshold determined by the physician as shown
in Fig. 1. Finally, the ISIs were calculated as the difference
between two consecutive spike timestamps.

Our modeling of the spiking activity in the brains of
PD and ET patients is performed based on the estimate of
the distribution of the ISIs, which we shall refer to as the
measured ISI distribution. The measured ISI distributions
is obtained by binning the ISIs, where the bin width is
calculated using the Freedman Diaconis rule [11] given by

h =
IQR(x)

(n)1/3
, (1)

where, x is the ISI’s, h is the bin width, IQR(x) is the inter-
quartile range of x and n is the number of data samples.

B. The Ornstein Uhlenbeck Process (OUP)

The OUP, Xt is a modified Wiener Process, which
can be thought of as the continuous-time analogue of the
discrete-time AR(1) process. It is described by the following
Langevin standard stochastic differential equation that can
be solved using Ito calculus [2] thus giving

Xt = µτ + (x0 − µτ)e−t/τ + σ

∫ t

0

e−(t−s)/τdWs (2)

∼ N
(
τµ+ (x0 − µτ)e−t/τ , (1− e−2t/τ )

σ2

2

)
, (3)

where Wt is the standard Wiener Process, τ > 0 is a
time constant, µτ > 0 is equilibrium mean value, σ > 0
is diffusion coefficient, and x0 is initial condition of the
process. Here N (µ, σ2) indicates a Gaussian distribution
with mean µ and variance σ2. A neuron generates an action
potential/spike when its membrane potential, Xt exceeds a
certain threshold, y0; then it resets to its resting potential,
x0 < y0. Mathematically, the time between two spikes, i.e.,
the ISI, is described by the FPT random variable T defined
as

T = inf{t ≥ 0 : Xt ≥ y0, X0 = x0 < y0}. (4)

The probability density function of the random variable T ,
indicated as fOUP(t;µ, σ)1, depends on the three intrinsic pa-
rameters (τ, x0, y0), and the two dynamic parameters (µ, σ).
A closed form for fOUP(t;µ, σ) is unknown, but its moment
generating function is known, from which fOUP(t;µ, σ)
can be efficiently numerically estimated. Parameters are
estimated as follows:

1Here, as in the following, fRP(x; · · · ) indicates the probability density
function of the ISI generated when the neuronal activity is modeled by
the random process “RP”, and where the parameters listed in “· · · ” are
estimated from the measured ISI data.
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• The intrinsic parameters (x0, y0) are set to plausible
physical values. In particular, without loss of generality,
we set x0 = 0 (a non zero value for x0 can be
incorporated in the long-term mean value that depends
on µ and τ ) and y0 = 15mV (where 15mV is the
difference between the neuron firing threshold and the
neuron resting potential).

• The dynamic parameters (µ, σ) are extracted by: (1)
moment method: the first two moments of the FPT are
equated to the first two moments of the measured ISI
distribution as done in [2], and (2) FIE method: two
different expressions of the probability density function
of the dimensionless form of the OUP are equated to
the estimate µ and σ.

• The time constant τ is chosen within the interval [1 :
25] ms in steps of 0.2 ms according to the following
criteria. For each τ we estimate the parameters (µ, σ)
according to one of the two methods described in the
above point, from which we obtain the ISI distribution
fOUP(t;µ, σ). We then evaluate the Integral Square
Error (ISE) as the sum of the squared error between
the measured ISI distribution and fOUP(t;µ, σ). The τ
that gives the lowest ISE is chosen.

Next we describe the two methods to obtain estimates for
the pair (µ, σ).

1) The moment method: Let m1 and m2 be the first two
moments of the measured ISI distribution. Let M1(η|ξ) and
M2(η|ξ) be the first two moments of the FPT in (4) for the
OUP in (3) (whose expressions can be found in [7] but are
not reported here for sake of space), where

ξ =

√
2

σ2τ
(x0 − µτ), η =

√
2

σ2τ
(y0 − µτ). (5)

In [2] the authors solved

τM1(η|ξ) = m1, τ2M2(η|ξ) = m2, (6)

to obtain the estimates (ξ̂, η̂), from which they computed the
OUP parameter estimates as

µmm =
1

τ

η̂x0 − ξ̂y0

η̂ − ξ̂
, σmm =

√
2

τ

y0 − x0

η̂ − ξ̂
. (7)

With the parameters in (7), the resulting ISI distribution is
denoted by fOUP(t;µmm, σmm).

2) The FIE method: We set x0 = 0 and consider the
dimensionless form of OUP given by

Ys =
Xsτ

y0
, α =

µτ

y0
, β =

σ

y0

√
τ

2
, s =

t

τ
. (8)

Then Ys ∼ N
(
α(1 − e−s), β2(1 − e−2s)

)
and, by writing

the density of Ys in two different ways [9], we have

LHS(s) = Φ

(
α(1− e−s)− 1√
β2(1− e−2s)

)
= (9)

=

∫ s

0

f(u)Φ

(
α− 1

β

1− e−(s−u)

√
1− e−(s−u)

)
du = RHS(s) (10)

TABLE II: Performance comparison of different processes
by using directional Wilcoxon signed rank tests.

ET FIE<BM FIE<PP FIE<Mom PP<BM
Results Yes Yes Yes Yes
p-value 0.0001 0.0001 0.0001 0.0392

PD FIE<BM FIE<PP FIE<Mom BM<PP
Results Yes Yes Yes Yes
p-value 0.0485 0.0027 0.0314 0.007

where Φ(·) and f(·) are the cumulative distribution function
and the probability density function, respectively, of the
random variable N (0, 1). We use the approximate solution
for RHS(s) in (10) as in [9] (indicated as RHSapp(s)) and
estimate (α̂, β̂) as

(α̂, β̂) = arg min
α,β

max
s∈R+

|RHSapp(s)− LHS(s)|, (11)

which represents the minimization of maximum Kolmogorov
Smirnov statistical error for the integral equation (10). Fi-
nally, we obtain the OPU parameter estimates

µfie =
α̂y0

τ
, σfie =

β̂y0√
2τ
. (12)

With the parameters in (12), the resulting ISI distribution is
denoted by fOUP(t;µfie, σfie).

We conclude the section by revising two other well known
models for the neuronal activity, PP and BM, and the
resulting ISI distribution.

C. The Poisson Process (PP)

When the spiking activity is modeled as a PP, the resulting
ISI has a Negative Exponential (NE) distribution. Let µne

be the maximum likelihood estimate of the mean of a NE
random variable from the measured ISI distribution. Then,
the resulting ISI distribution is

fPP(t;µne) =
1

µne
e−t/µne , t ≥ 0.

D. The Brownian Motion (BM)

When the spiking activity is modeled as a BM with
positive drift, the resulting ISI has an inverse Gaussian (IG)
distribution. The maximum likelihood estimates of the IG
model parameters are a function of the measured sample
mean and variance of the ISI. The IG model parameter, µig

can be estimated as the measured mean ISI and λig can be
estimated as the ratio of the cube of the mean and variance.
Then, the resulting ISI distribution is

fBM(t;µig, λig) =

√
λig

2πt3
exp

{
−λig(t− µig)2

2µ2
igt

}
, t ≥ 0.

III. RESULTS

A. Performance Comparison based on Statistical Analysis

The quantitative statistical performance comparison of the
different stochastic processes is summarized in Table I for
both ET and PD patients. Table I reports several statistical
dispersion parameters: the median, the first quartile Q1, the
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TABLE I: Quantitative performance comparison of different processes.
Process, Median First Third Inter- Standard Median
Disease Quartile Quartile Quartile Deviation Absolute

(Q1) (Q3) Range [w/o outliers] Deviation
×10−3 ×10−3 ×10−3 ×10−3 ×10−3 ×10−3

OUP-FIE, ET 0.1507 0.0559 0.2704 0.2145 0.1295 0.0974
OUP-MOM, ET 0.1759 0.0820 0.3112 0.2292 0.1393 0.1201

PP, ET 0.5009 0.2460 0.7872 0.5412 0.3116 0.2883
BM, ET 1.0319 0.1309 2.9752 2.8443 1.7873 0.9698

OUP-FIE, PD 0.0396 0.0163 0.1166 0.1003 0.0782 0.0294
OUP-MOM, PD 0.0742 0.0326 0.2128 0.1802 0.1140 0.0552

PP, PD 0.4428 0.3898 0.7082 0.3184 0.2493 0.1867
BM, PD 0.0686 0.0228 0.2220 0.1992 0.1369 0.0572

third quartile Q3, the inter quartile range Q1 − Q3, the
standard deviation without outliers, and Median Absolute
Deviation. All of these values for each stochastic model were
calculated across all recordings of all ET and PD patients
separately. For each of the parameters, the OUP-FIE method
gives the minimum value. The maximum statistical parameter
values are obtained from the BM and PP for ET and PD
patients respectively. This shows that the OUP-FIE method
provides the best curve fit to measured ISI distribution,
according to the ISE criteria, among the four proposed
models. We also notice that OUP-MOM, although inferior
to OUP-FIE, performs better than BM and PP, according to
the ISE criteria.

In order to determine whether the ISE values obtained
with OUP-FIE were significantly less than those obtained
with other stochastic processes, we performed a series of
directional Wilcoxon rank tests over all recordings from PD
and ET patients. In Table II the results of the first three tests
show that there is statistically significant reduction in ISE
values obtained with OUP-FIE compared to those obtained
with the other stochastic processes for both ET and PD
patients. This shows that the OUP, when its parameters are
estimated by the FIE method, provides a good model for the
neuronal activity. The last test in Table II compares PP and
BM. For ET patients, it shows that that PP is superior to
BM, while for PD patients, it shows that that BM is superior
to PP.

IV. CONCLUSIONS

In this work we demonstrated that the OUP can be
used to model the neuronal spiking activity in the STN of
10 PD patients and in the VIM of 19 ET patients. The
OUP requires less parameters compared to a deterministic
model for neuronal activity, therefore it is a computationally
efficient method to model the neuronal activities. To extract
the OUP parameters from the measured ISI distribution, we
used the FIE method. We compared the performance of OUP-
FIE with that of BM, PP and OUP-MOM and concluded that
the OUP distribution in which the model parameters were
extracted using the FIE method provides the best fit for both
PD and ET patients data sets. We also performed different

directional Wilcoxon rank tests to statistically compare the
performance of different stochastic process. We concluded
that the overall performance of FIE method is best amongst
all stochastic processes, i.e., it provides the best fit to all
measured ISI distributions for both PD and ET patients.

This type of stochastic modeling of the neuronal activity
might be helpful in determining the effect of DBS on the
input dynamic parameters of the OUP model. By determining
a relationship between the DBS parameters an the OUP
model parameters, we might be able to find a DBS paradigm
that correlates to the most optimal clinical effects on a
patient.
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