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Abstract— Deep Brain Stimulation (DBS) is a surgical pro-
cedure to treat some progressive neurological movement dis-
orders, such as Essential Tremor (ET), in an advanced stage.
Current FDA-approved DBS systems operate open-loop, i.e.,
their parameters are unchanged over time. This work develops
a Decision Tree (DT) based algorithm that, by using non-
invasively measured surface EMG and accelerometer signals as
inputs during DBS-OFF periods, classifies the ET patient’s state
and then predicts when tremor is about to reappear, at which
point DBS is turned ON again for a fixed amount of time. The
proposed algorithm achieves an overall accuracy of 93.3% and
sensitivity of 97.4%, along with 2.9% false alarm rate. Also, the
ratio between predicted tremor delay and the actual detected
tremor delay is about 0.93, indicating that tremor prediction is
very close to the instant where tremor actually reappeared.

Index Terms— Essential Tremor, Accelerometer, Surface
EMG, Decision Tree, Gini index impurity function, Closed-loop
Deep Brain Stimulation, Tremor Prediction.

I. INTRODUCTION

Essential Tremor (ET) is a progressive neurological disor-
der of the central nervous system that occurs only when the
affected muscle exerts effort. We will use postural to indicate
posture tremor and movement to indicate kinetic tremor.
The treatment of ET advanced stage patients may include
surgical procedures, such Deep Brain Stimulation (DBS).
DBS uses a surgically-implanted battery-operated pulse gen-
erator to provide high frequency electrical stimulation to the
neurons that control movement. In current FDA-approved
DBS systems, stimulation parameters are fixed over time
and the stimulation is provided continuously, meaning that
stimulation is not adapted to the patient’s needs. In [1] we
argued that, in order to design an adaptive closed-loop DBS
system, suitable physiological signals that contain tremor
information must be tracked during DBS-OFF periods, based
on which stimulation is turned ON when tremor is predicted
to be about to reappear; stimulation is then applied for a
fixed amount of time, after which the cycle restarts. In [2] it
was shown that DBS could be switched OFF for up to 50%
of the time without patients experiencing any discomfort.

In [1] we designed a closed-loop ON-OFF DBS system
based on surface electromyogram (sEMG) and accelerometer
(Acc) signals measured non-invasively from the patient’s
symptomatic extremities. We extracted several features from
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Fig. 1. Proposed algorithm: a DT-based classifier (to discriminate
between movement and postural conditions) followed by two DT-
based tremor predictors, one for movement condition and the other
for posture condition.

the sEMG and Acc signals and manually designed thresholds
for a tremor prediction algorithm that was shown to achieve
an overall sensitivity of 100% along with an accuracy of
85.7% in ET trials; based on statistical tests, we concluded
that the predicted tremor reappearance times differ from
random prediction outcomes. Towards the design of a fully
automated closed-loop DBS system suitable for commercial
implementation, in [3] we developed a tremor predictor
based on a feed-forward back-propagation Neural Network
(NN), which achieved an overall sensitivity of 92.3% and
accuracy of 75.8% when tested on 2 Parkinson’s Disease
(PD) patients. In [4] we proposed to improve the design
of [3] by incorporating a Decision Tree (DT) based classifier
to discriminate between movement and posture states for
ET patients. In [4], the joint performance of state classifier
and tremor predictor was not investigated, which is the main
undertaking of this work.

Our main contribution is the development of an automated
two-stage tremor predictor as shown in Fig. 1. The first stage
is a DT-based classifier, to discriminate between movement
and postural conditions based on the power of the sEMG
and Acc signals as in [4]. The second stage consists of two
DT-based tremor predictors (as opposed to a single NN-based
predictor as in [3]), one designed for the movement condition
and the other for the postural condition. The predictors’
inputs are spectral and entropy measures derived from the
sEMG and Acc signals. The algorithm was tested on 75 trials
recorded from 3 ET patients, with 55% of the trails used for
training and the rest for testing. The algorithm has an overall
sensitivity of 97.4% and accuracy of 93.3%.

The rest of the paper is organized as follows. Section II
describes the data set. Section III summarizes the parameter
extraction methodology. Section IV describes the proposed
algorithm. Section V presents the performance results fol-
lowed by discussion.
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II. HUMAN SUBJECTS AND DATA RECORDING SETUP

Three ET patients treated with DBS were recruited for
this study, two from Rush University Medical Center and
one from University of Illinois at Chicago Hospital, with IRB
protocol approved by the respective institution. In all patients
the DBS electrodes (Medtronic DBS, lead model 3389)
were stereotactically implanted in the ventral intermediate
nucleus of the thalamus and had dominant tremor in one or
both arms; the tremor was controlled by a combination of
stimulation and medication. On the recording day, all the
subjects were on their regular medication. Recordings were
conducted in the Neural Control of Movement Laboratory at
the University of Illinois at Chicago.

The data recording setup was as in [5]. The sEMG signal
was recorded from the extensor digitorum communis of the
forearm with the worst tremor, was amplified (gain set to
1,000) and then bandpass filtered between 20Hz and 450Hz
(Delsys Inc., Boston, MA). Along with sEMG, the Acc
signal was recorded with a calibrated Coulbourn type V94-
41 miniature solid-state piezoresistive accelerometer with
resolution 0.01g. There were 75 trials, each started with 20-
50s of DBS and followed by a DBS OFF interval. Trials
were in the one of the two conditions:
• Postural (P): Patients maintained their hand and wrist in

a neutral, extended position level with the table surface
• Movement (M): Patients performed a voluntary move-

ment such as reaching for their opposite shoulder.

III. PARAMETER EXTRACTION

The input parameters for the proposed algorithm are as
in [1], [3], [4] and are summarized next for completeness.

A. Input parameters for DT-based classifier

The power of the raw sEMG and Acc signals, used as
inputs to the DT-based classifier, are calculated as

XP?
(i) =

∫ tp(i)+0.5

tp(i)

x2
?(t) dt, ? = sEMG, Acc, (1)

where xsEMG(t) and xAcc(t) are the recorded sEMG and
Acc signal, respectively, and tp(i) = t0 + i∆ for i ∈ [0 :
80], t0 is voluntary motion start time, i.e., the postural or
movement condition start time for different trials, and ∆ =
0.025s is the size of the sliding window.

B. Input parameters for DT-based predictor

The tremor predictor inputs are a combination of spectral,
entropy and recurrence measures from the smoothed sEMG
signal obtained by averaging the raw signal over 1s windows
and then sliding the window by 0.25s therefore generating a
sample every 0.25s.

The mean frequency is the expected value of the frequency
distribution over the spectrum range considered

Fmean =

∑N
n=1 fnPn∑N
n=1 Pn

, N = 37, (2)

where Pn is the power of a 1s window of the smoothed
sEMG at frequency band centered around fn, n ∈ [1 : N ],
calculated by using a 512-point Fourier transform.

The frequency band of interest is from f4 = 3Hz to
f19 = 18Hz, which carries tremor information. For each
band we calculate the power Pn; the frequency band with
maximum power has index i? = arg maxn∈[4:19]{Pn}. The
peak frequency and the power at peak frequency, whose
utility is explained in [1], are respectively

Fmax = fi? , Pmax =
Pi?∑

i∈[20:37] Pi
. (3)

In (3) Pmax is normalized by the power of signal outside the
tremor frequency range because the power at Fmax must be
compared over different trials, which might have significantly
different power outside the range of interest.

The mean power in n-th frequency band is obtained by
decomposing the smoothed sEMG signal into M = 10 fre-
quency bands with Daubechies4 wavelets. Let Xj(t) denote
the signal in the j-th frequency band, j ∈ [1 : M ]. The mean
power in j-th frequency band is defined as

Pj =
1

∆T

∑
t∈∆T

|Xj(t)|2, ∆T = 1s. (4)

The sample entropy SpEn(U,m, r) for a time series U
(here the smoothed sEMG signal) of length L involves two
input parameters m and r, which are the pattern length and
the similarity criterion, respectively. It is defined as

SpEn(U,m, r) = lim
L→∞

− log
Bm+1(r)

Bm(r)
, (5)

where Bm+1(r)/Bm(r) represents the conditional probabil-
ity that the two sub-sequences of U matches point-wise for
m points will also match within a tolerance r at the next
point; therefore a lower SpEn(U,m, r) value reflects a high
degree of regularity [6]. Here m = 2, r = 0.14σ, where σ is
the standard deviation of the smoothed sEMG signal.

The recurrence rate involves the calculation of a recur-
rence matrix with elements, Ri,j , (i, j) ∈ [1 : P ], P =
L − (E − 1)τ , for U = {x(i), i ∈ [1 : L]} of length L
considering E = 5, τ = 3, L = 1000 as described in [7].
From Ri,j the recurrence rate R is calculated as

R =
1

P 2

∑
i,j

Ri,j (6)

and quantifies possible non-linear synchronizations in the
sEMG signal (it corresponds roughly to the probability that
a specific state of the dynamical system, reconstructed using
a method of delayed vector construction, will recur [7]).

IV. PROPOSED ALGORITHM

A DT comprises three sets of nodes: root node nR,
intermediate nodes n, and terminal nodes nT . This algorithm
creates a binary tree by dividing an unclassified data set
fed at root node nR into smaller and smaller classified data
based on the set of binary questions. Let p(k|n) denote the
node proportions for class k ∈ [1 : 2] at node n, which is
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the estimated probability of class k within node n [8]. The
impurity at node n is a non-negative function of the node
proportions, in this work calculated by using Gini index [8]

i(n) = 1−
2∑

k=1

(
p(k|n)

)2
. (7)

By using a set of binary questions at each node, a set of
binary splits are generated to divide the node n into a right
node nr and a left node nl with proportions pr and pl,
respectively [8]. The goodness of the split at a node n, is
computed in terms of decrease in impurity as

∆i(s, n) = i(n)− pli(nl)− pri(nr), ∀s ∈ S, (8)

where S is a set of binary splits at each node n generated by
a set of binary questions [8]. The split s∗ is chosen among
all splits s ∈ S as the one that gives the largest decrease
in impurity in (8). The algorithm starts at the root node;
based on ∆i(s∗, nR), the root node nR is split into two
nodes nl and nr; the procedure is recursively continued on
each node till no further decrease in impurity is possible
on subsequent splits; the last node in this procedure is
termed the terminal node nT . The resulting tree is subjected
to further optimization by pruning some of its sub-trees
and nodes to reduces: (a) complexity and (b) over-fitting
to the training data set so as to increase the classification
accuracy during testing; here pruning is implemented by
using the optimal pruning scheme in [8, Section 10.2]. First,
the unclassified training data set is placed at the root node
nR; then based on binary questions, the data set is partitioned
into smaller and smaller classified data sets as described
above; finally, the maximum tree with several levels is built
whose terminal nodes consists of a particular class samples
and optimized by optimal pruning scheme.

The DT structure is built during the training phase and
remain fixed in the testing phase. For both the classifier and
tremor predictor, training is performed by using 10 out of 19
trials for ET patient 1 (Right Hand), 6 out of 10 trials for
ET patient 1 (Left Hand), 9 out of 16 trials for ET patient
2, and 16 out of 30 trials for ET patient 3.

Our DT-based classifier, to discriminate between the
movement (M) and postural (P) conditions, uses the power
of raw sEMG signal (XPsEMG(i)) and of the Acc signal
(XPAcc(i)) for i ∈ [0 : 80], in (1). The input is the matrix
[XPAcc

(i), XPsEMG
(i)]i∈[0:80] and the output is the vector

[yi]i∈[0:80] where yi ∈ {M,P}.
Our DT-based predictor, uses as inputs the

quantities in (2)-(6) computed from the smoothed
sEMG. At time instant l ∈ [1 : 4T ], where T
is an integer that equals the duration of a trial
which is multiplied by 4 as we are generating
parameter samples every 0.25s, the inputs is X(i) =[
Fmean(i), Fmax(i), Pmax(i), Pj(i),SpEn(U,m, r)(i),R(i)

]
,

and the output Y (i) is Y (i) = 0 for Non-Tremor and
Y (i) = 1 for Tremor. We use a sliding window processing
of 0.25s; by training the algorithm to transition from
Non-Tremor to Tremor at the time instant where tremor
was visually detected, the prediction of tremor for some

of the trials turned out to be ‘delayed’ by 0.5s to 2.5s;
for this reason, we train the algorithm to transition from
Non-Tremor to Tremor 2.5s before tremor was visually
observed to capture the building up of the tremor. This
procedure is depicted in Fig. 2. In Fig. 2 the six elements of
the input vector at a particular time instance are indicated
by arrows and the corresponding output is 1 (as this time
instance lies in Tremor region).

V. RESULTS AND DISCUSSION

The algorithm performance is evaluated by following [1].
Let T be the total duration of a trial. Let ton and toff be the
times when DBS was switched ON and OFF, respectively.
Let ttr and tpr be the times when tremor was detected and
predicted using the DT-based algorithm, during the DBS-
OFF period, respectively. During testing, the trials for which
tremor was detected over the recorded interval after DBS
was OFF, i.e., ttr < T , were considered as tremor detected
(TD) trials, otherwise as No-Tremor Detected (NTD) trials.

Classification of prediction outcomes for TD trials:
True positive (TP): if [(ttr > tpr) and (ttr − tpr) <
max(5s, 0.5(tpr− toff))] or [(ttr < tpr) and (tpr− ttr) < 1s],
then the algorithm successfully predicts tremor.
False positive (FP): if (ttr > tpr) and (ttr − tpr) >
max(5s, 0.5(tpr − toff)], then the prediction is too early.
False negative (FN): if (ttr < tpr) and (tpr− ttr) > 1s, then
the prediction is too late.

Classification of prediction outcomes for NTD trials:
True negative (TN): if the algorithm does not predict tremor
over the interval T − toff .
False positive (FP): if the algorithm predicts tremor over the
interval T − toff .

For the algorithm to perform well, the total number of
TP and TN must be maximized while minimizing FP and
eliminating FN. This would achieve the longest tremor-free
interval when DBS is OFF. In order to quantify this we
calculate the following performance metrics

Sensitivity =
#TP

#TP + #FN
, (9)

Accuracy =
#TP + #TN

#TP + #TN + #FP + #FN
, (10)

FalseAlarm =
#NTD−#TN

#NTD
, (11)

Mcc =
(#TP)(#TN)− (#FP)(#FN)√

(#TP + #FP )(#TP + #FN)
(#TN + #FP )(#TN + #FN)

. (12)

Mcc in (12) defines the Matthews correlation coefficient [9]
which measures the quality of a binary classifier. The sen-
sitivity in (9) should be very high (above 90%) as we
do not want to miss any of the tremor events. Accuracy
in (10), which is the ratio between the correctly predicted
trials and the total number of trials, should be high (over
80%). The false alarm rate in (11) is proportional to the
number of early tremor predictions in case of NTD trials
and hence should be low (less than 20%). Furthermore, let
Rpd =

∑
(tpr − toff)/

∑
(ttr − toff), where the summations
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Mean Frequency

Power at Peak Frequency

Sample Entropy

Peak Frequency

Recurrence Rate

Mean Power in 8-16 Hz band

Time in Seconds

2.5 seconds before
tremor starts

Stimulation Stop Time (toff)

Non-Tremor region
Output =0

Tremor Prediction Time (tpr)
Tremor Start Time (ttr)

Tremor region
Output =1

Six Points of a input Vector 
at a Particular Time Instance

Recoding begins Recoding ends

Stimulation Start Time (ton)

Fig. 2. Inputs and output for the DT-based predictor in a particular trial used for training. The bold vertical line, set at 2.5 sec before
tremor was visually observed, divides the time series of the extracted parameters into Tremor (output equals 1) and No-Tremor regions
(output equals 0). A time instance in the ’tremor region’ is shown via a thin vertical line: the six elements of the corresponding input
vector are indicated by six arrows, which results in a output equal to 1.

are over all the TD trials. For NTD trials we use ttr =
T − toff , tpr = min(T, tpr) because the tremor reappearance
time is unknown. Rpd provides a measure of how good the
prediction is, i.e., a higher value indicates that the predicted
delay tpr is closer to the actual delay ttr which is desirable.

From, the prediction results for each ET patient and overall
as summarized in Table I, we see that the proposed algorithm
achieves an overall accuracy of 93.3%, which shows that in
93.3% of all ET trials, the DT based algorithm correctly
predicts tremor. The DT based algorithm also achieves an
overall sensitivity of 97.4%. For all except patient ET3 the
algorithm achieves 100% sensitivity which indicates no miss
in the tremor prediction in case of three ET patients. The
high Rpd value (93.3%) along with low value of false alarm
rate (2.9%) is achieved in all ET patients. The overall and
individual Mcc values are greater than 0.75 which shows
that there is strong correlation between prediction and actual
classification. Moreover, for some performance indices we
improved on our manual tremor prediction algorithm in [1]
that achieved an overall accuracy of 85.7%, sensitivity of
100%, Rpd of 84.5%, Mcc of 0.71 and false alarm rate
of 11.6% for ET trials. We have thus shown that by using
parameters as in [1], we can design an automatic tremor
prediction algorithm using DT type classifiers to effectively
predict an incoming tremor in ET patients. For future work,
we will also apply this algorithm to predict the tremor in
case of PD patients.
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