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Abstract— Myoelectric control of prosthetic devices tend to
rely on classification schemes of extracted features of EMG
data. Those features however, may be sensitive to arm position
resulting in decreased performance in real-world applications.
The effect of varying limb position in a pattern recognition
system have been illustrated by documenting the change in
classification accuracy as the user achieves particular limb
configurations. We continue to investigate this limb position
effect by observing its impact on classification accuracy as well
as through an analysis of how each extracted feature of the
raw EMG varies in each position. Finally, LDA classification
schemes are applied both to demonstrate the effect varying
limb position has on classification accuracy and to increase
classification accuracy without the use of additional hardware
or sensors such as accelerometers as has been done in the past.
It is shown that high classification accuracy can be achieved by
(1) training an LDA classifier with data from many positions,
as well as (2) by utilizing an extra position LDA classifier which
can weigh the grasp classifiers appropriately. The classification
accuracies achieved by these methods approached that of a
model relying on a perfect knowledge of arm position.

I. INTRODUCTION

Although pattern recognition based prostheses have been
given significant credit for bringing the user increased de-
grees of freedom, a significant limitation to pattern recog-
nition prostheses has yet to be overcome. Its accuracy
significantly degrades as the user moves from the location in
which the system was trained. Many myoelelectric control
schemes have been reported as having high classification
accuracies [1], [2]. These results however, were achieved
in experimental paradigms that largely did not consider the
impact of changes in limb position and orientation. These are
significant factors as it has been shown that the accuracy of a
pattern recognition-based upper-limb myoelectric prostheses
is significantly influenced by the position of the limb [3],
[4], [5], [6], [7]. It is desirable that the upper-limb prosthetic
device maintain its functionality in a wide range of positions
so that its usability can be expanded towards a greater
number of daily tasks.

The disparity between classification accuracy at the train-
ing position and the accuracy of the system when the limb
is in a different location has heretofore been referenced
as the “limb position effect” [4]. Previously, the effect of
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varying limb position in pattern recognition systems has
been illustrated by documenting the change in classification
accuracy as the user achieves a particular limb configuration.
The problem has been ameliorated by groups incorporating
sensors to discriminate between positions [4], [5], or find
features which are not as susceptible to change across limb
positions [7]. This paper continues to investigate the limb
position effect by observing not only the degradation of
classification accuracy, but also, more fundamentally, through
analysis of how each extracted feature of the raw EMG
varies in each position. Additionally, potential solutions are
presented by generating classifiers using Linear Discriminant
Analysis (LDA) each having varying degrees of positional
awareness. Through a more comprehensive understanding of
the issue, one can gain a greater insight into not only why a
solution to this issue is necessary but also where the solutions
fall short and how future work may advance the field. Finding
a solution to the issue is paramount to improve the usability
of such a device in day-to-day use.

II. METHODS
A. Population and Data Acquisition

For this pilot study, EMG data was collected from two
able-body patients: Subject 1 - male, age 24, with extensive
exposure to pattern-recognition based myoelectric prostheses
control; Subject 2 - female, age 25, with no prior exposure
to myoelectric control. The first having trained according the
model established by [8] in which principles were learned
to create “consistent and distinguishable movements through
interaction with a visual biofeedback training system” [8].

Eight channels of raw EMG were obtained through dif-
ferentially amplifying electrode pairs placed approximately
equidistant around the circumference of the forearm, ap-
proximately three inches distal to the medial epicondyle
of the humerus. The electrode pairs were numbered one
through eight with the first placed above the extensor carpi
ulnaris muscle and the others continuing clockwise around
the forearm if viewing a cross section of the forearm look-
ing up the arm. The stainless-steel dome electrodes were
inserted into a non-conductive elastic band with options
for sizing according to the diameter of the user’s forearm.
The ground electrode was a Norotrode 20 bipolar Ag/AgCl
EMG electrode (Myotronics, Kent, WA) and was placed
approximately one inch proximal to the olecranon. The
cables connecting the electrodes to the amplifiers and to
the data acquisition system were well maintained eliminating
extraneous factors and potential artifacts due to pulling forces
on the electrodes or rotation of the clips attached to the
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electrodes. The raw data was amplified after approximately
one foot of shielded cable by 13E200 MYOBOCK electrodes
(Ottobock, Plymouth, MN) such that saturation did not occur.
Following amplification, the signal was sampled using the NI
USB-6009 (National Instruments, Austin, TX) at 1000Hz per
channel. A subsequent 30-300Hz bandpass and a 60Hz notch
filter were applied to the signal as indicated by [8]. Although
standard surface EMG signal conditioning usually utilizes a
20-500Hz bandpass filter, the authors decided to narrow that
band in order to avoid as much as possible low frequency
instabilities due to fast twitching of the stump muscles in
a real application (amputees) and noise outside the main
band of the power spectrum (below 300Hz). Additionally,
the features extracted in this work are not strongly affected
by frequencies outside this range.

Each subject performed five unique hand or wrist config-
urations including rest (R), hand open (O), hand close (C),
wrist pronate (P), and wrist supinate (S). These hand and
wrist configurations will hereafter be referenced as “grasps.”
The subjects performed five repetitions of each grasp main-
taining the contraction for a duration of four seconds for
each repetition. They performed this routine while standing
with their arm in seven locations relative to their body,
namely: (1) in the neutral (N) position (from anatomical
neutral, 90o elbow flexion and 90o wrist pronation), (2) in the
“upper right” (U-R) location with 135o shoulder abduction
in the sagittal plane, (3) in the “down right” (D-R) location
with 45o shoulder abduction in the sagittal plane, (4) in
the “down” (D) location with the shoulder in its anatomical
neutral position, (5) in the “down left” (D-L) location with
45o shoulder flexion and 45o shoulder adduction, (6) in the
“upper left” (U-L) location with 135o shoulder flexion and
45o shoulder adduction, and finally (7) in the “upper” (U)
location with 135o shoulder flexion.

B. Data Processing

Time domain (TD) features of the amplified and filtered
EMG signals were obtained by imposing a 200ms moving
window with 175ms overlap (25ms delay plus processing
time). The TD features extracted were mean absolute value
(MAV), waveform length (WL), and signal variance (VAR).
These features were extracted over others because of prior
work suggesting they are sufficient for high classification
accuracy in real-time myoelectric control environments [9],
[10].

Subsequent LDA classification of the acquired features
and the associated grasp was performed. The method in
which LDA classification was applied was unique to each
of the four scenarios described hereafter. It is shown how
the resulting classifiers were utilized in various ways to
both demonstrate the effect of varying limb position on
classification accuracy and work towards achieving higher
classification accuracy. In each case, five fold cross validation
was used to estimate classification accuracy. This is per-
formed by using data from four of the five trials of each grasp
to train the system and evaluating the resulting classifier on

the remaining trial. A classification accuracy percentage is
computed for each of the five folds as given by (1).

Number of samples correctly classified
Total number of testing samples

(1)

The average of these five individual classification accura-
cies is reported along with the standard error of the mean.

1) Method 1: Seven unique grasp classifiers are created
using the data obtained from each respective location. By
applying the classifier corresponding to the current position
of the arm, the system has perfect positional awareness and
the classifier that was created in the current position of the
arm can be applied to incoming data. In so doing, an upper
bound for classification accuracy is found given the model
parameters (window, extracted features etc.).

2) Method 2: A single grasp classifier was created from
training data collected in the neutral position. This classifier
is applied to new data obtained in the neutral position as
well as to data from the remaining six positions.

3) Method 3: A single grasp classifier was created using
training data from all seven locations. In this way, the result-
ing classifier can be described as an “aggregate” classifier
over the seven training locations.

4) Method 4: A position classifier is created whose output
weighs each individual grasp classifier accordingly. Thus, if
the position classifier is confident that the user’s arm is in a
particular position, the upper-right position for example, the
grasp classifier created from data collected in the upper-right
position will have a larger influence on the predicted grasp
being performed. In this way, an estimate of arm position
influences the degree to which the output of each grasp
classifier is considered when making the final estimate of
the grasp being performed.

Fig. 1. The seven confusion matrices on each half of the figure represent
the seven positions from which training data was obtained from Subject 1.
To the left of the dashed line are confusion matrices for the provided cue
matching the predicted cue when the classifier is created and applied in
the same location. To the right are confusion matrices for the provided cue
matching the predicted cue when the classifier is created in the “neutral”
position and applied in all locations.
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Fig. 2. Periodic cubic spline interpolation of average MAV over the entire
grasp period for the “close” grasp in each of the seven locations for Subject
1. The electrode pair numbers are shown around the center ring. Red denotes
large MAV values while blue denotes low.

III. RESULTS

A. Illustrations of the Limb Position Effect

The limb position effect is clarified and depicted in this
section by providing the results of various analysis methods
in the form of (1) confusion matrices, (2) depictions of
EMG activity around the circumference of the arm, and (3)
through plots of extracted feature behavior during each grasp
performed in each position as detected by a single electrode.

Fig. 1 gives a visual representation of the effect limb
position variation has on classification accuracy. When the
classifier is created and evaluated in the same position,
classification accuracy of 98.5±0.2% is achieved. When the
classifier is created in the neutral position and evaluated in
all positions, classification accuracy decreases to 83.5±0.8%.

The effect of varying limb position in a pattern recognition
system have been documented by reporting the change in
classification accuracy as the user achieves a particular limb
configuration. Although Fig. 1 goes beyond reporting a
single value for classification accuracy, it similarly reports
classification accuracy as a means for demonstrating the
effect. Fig. 2 and Fig. 3 however, shed more light into why
classification accuracy degrades as the subject moves from
the position in which the classifier was trained.

Fig. 2 shows how MAV recorded by each electrode varies
according to arm position while performing the hand-close
grasp. Similar results were obtained for the other four
grasp types. It can be seen that the MAV values change
considerably depending on arm position.

Fig. 3 also shows that extracted feature means vary con-
siderably from position to position. It illustrates that not
only MAV means, but the mean of each extracted feature
(MAV, WL, and VAR) varies. A one-way ANOVA was used
to test this observation that the extracted features differ
according to position. With p<.001 for each feature and
grasp combination, it can be concluded that the features
are significantly different across positions. Although the
figure only shows the data obtained by one electrode pair,

Fig. 3. Normalized mean of the respective feature with error bars
representing one standard deviation above and below the mean for each
grasp in each position as measured by electrode pair 8 from Subject 1.

TABLE I
RESULTS OF CLASSIFICATION SCHEMES

Method Classification Accuracy (%)

Subject 1 Subject 2
1 98.5±0.2 87.4±1.2
2 83.5±0.8 77.9±0.4
3 96.5±0.3 86.9±0.9
4 96.5±0.7 83.8±1.4

similar results were observed for all electrode pairs. Such
a depiction of the limb position effect shows the issue at a
more fundamental level.

B. LDA Classifiers

1) Method 1: For Subject 1, average classification accu-
racy when the classifier was created and applied in the same
location was 98.5±0.2%. For Subject 2, average classifica-
tion accuracy in this scenario was 87.4±1.2%.

2) Method 2: For Subject 1, average classification accu-
racy when the classifier was created in the neutral position
and applied in all positions was 83.5±0.8%. For Subject 2,
classification accuracy for this scenario was 77.9±0.4%.

3) Method 3: When a single grasp classifier was created
using training data from all locations, the classification
accuracy for Subject 1 was 96.5±0.3%. Implementing this
method for Subject 2 yielded an average classification accu-
racy of 86.9±0.9%.

4) Method 4: By creating a position classifier whose
output applies a weight to the individual grasp classifiers,
grasp classification accuracy for Subject 1 was 96.5±0.7%
(with position classification accuracy of 43.4±3.3%), while
for Subject 2, classification accuracy was 83.8±1.4% (with
position classification accuracy of 38.7±2.3%). The result of
the position classifier for Subject 2 can be seen in Fig. 4.

The results of the four classification schemes are summa-
rized in Table I.

IV. DISCUSSION

Fig. 1 illustrates that classification accuracy deteriorates
when the model receives data from positions different than
that where it was trained. In other words, classification
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Fig. 4. Confusion matrix of actual position vs predicted position for Subject
2 applied in classification Method 4.

accuracy degrades as the user moves their arm from the
location in which the classifier was trained. Thus the claim
from previous research is made stronger that the limb
position effect is an issue requiring serious attention in
order to improve usability to myoelectric pattern-recognition
prostheses.

Fig. 2 and Fig. 3 address the issue at a more funda-
mental level. It is observed that the signals received by
each electrode during each grasp type vary significantly
across position. Ultimately, it is the changing extracted EMG
features that explain the degrading classification accuracy in
positions other than where the classifier was trained. Hence,
if a classier is trained in the neutral position and is applied
to data acquired at different arm positions, one can expect a
higher degree of miss-classification.

In an effort to create a more robust system to these
variations, four classification methods were explored. The
results show that classification accuracy can be increased
from the “worst case” scenario (no account for limb position
after having created a classifier in one position) without
integrating additional sensors such as accelerometers or other
inertial measurement units (IMUs). This can be done by
either creating an aggregate classifier combining the training
data from all locations into one classifier (Method 3), or by
incorporating some information about arm position to weigh
the individual grasp classifiers appropriately (Method 4). It
is worth mentioning that the classification accuracy achieved
by these aforementioned methods approached that of the best
case scenario given the model parameters in which a perfect
knowledge of position was utilized.

Although methods 3 and 4 provided satisfactory improve-
ments in accuracy, the authors argue that Method 4 has a
greater potential for further improvement, as it can benefit
from real world position information provided by kinematic
sensors. The authors have begun work towards this aim
which will be the focus of future publication.

V. CONCLUSIONS

The results of this pilot study clearly illustrate the variation
in extracted EMG features across limb position and the effect
these changes have on classification accuracy. Classification

methods 3 and 4 serve to create a more robust myoelectric
control scheme of an upper limb prostheses allowing for
greater utility of the device.

Having a perfect knowledge of position, classification
accuracy of 98.5% and 87.4% is achieved by subjects 1 and
2 respectively. By creating an aggregate classifier created
over all space, classification accuracy is 96.5% and 86.9%
for each subject respectively. Finally, by weighing each grasp
classifier by an estimate of position, accuracies of 96.5% and
83.8% are achieved.
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