
  

 

Abstract— In electromyography pattern-recognition-based 

control of a multifunctional prosthesis, it would be inevitable for 

the users to unintentionally perform some classes of movements 

that are excluded from the training motion classes of a classifier, 

which might decay the performance of a trained classifier. It 

remains unknown how these untrained movements, designated 

as non-target movements (NTMs) in the study, would affect the 

performance of a trained classifier in the control of 

multifunctional prostheses. The goal of the current study was to 

evaluate the effects of NTMs on the performance of movement 

classification. Five classes of target movements (TMs) and four 

classes of NTMs were considered in this pilot study. A classifier 

based on a linear discriminant analysis (LDA) was trained with 

the electromyography (EMG) signals from the five TMs and the 

effects of the four NTMs were examined by feeding the EMG 

signals of the four NTMs to the trained classifier. Our results 

showed that these NTMs were classified into one or more classes 

of the TMs, which would cause the unexpected movements of 

prostheses. A method to reduce the effects of NTMs has been 

proposed in the study and our results showed that the averaged 

classification accuracies of the corrected classifiers were above 

99% for the healthy subjects. 

 

I. INTRODUCTION 

Electromyograhy (EMG) signals from the residual 
muscles have been widely used as a useful control signal in 
multifunctional myoelectric prostheses for the individuals 
with limb amputations. Currently, most commercially 
available myoelectric prostheses are controlled by the 
amplitudes of surface electromyography (EMG) signals from 
a pair of agonist-antagonist muscles on residual limbs. It is 
well known that this conventional control method is limited in 
control of multiple degrees of freedom of movements and 
lacks of intuitive controls of prostheses [1, 2]. In order to 
improve the performance of multifunctional prostheses, EMG 
pattern-recognition-based (EMG-PR) control methods have 
been well applied by many laboratories worldwide [1-11]; 
these previous efforts have suggested that the EMG-PR 
approaches would have the potential to allow the limb 
amputees to intuitively operate their multifunctional 
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prostheses. Unfortunately, the multifunctional myoelectric 
prosthetic systems with the EMG-PR-based control method 
still stay in the laboratories and do not become a reality. The 
major reason why no EMG-PR-based prosthetic systems are 
available yet for clinical uses might be that the current 
EMG-PR prosthetic systems might lack of reliability and 
robustness for the clinical uses. 

Recently, a number of efforts have been made with an 
attempt to speed up the progress of getting the 
EMG-PR-based prosthetic systems from the laboratory to 
clinical applications[4-6, 8, 9, 12]. Different disparities 
between the laboratory states and clinical states for 
myoelectric prostheses have been addressed and investigated 
well, such as the influences of electrode shifting, muscle 
contraction variation, muscle fatigue, sampling rate of EMG 
signals, and arm position changes, on the movement 
classification performance for the EMG-PR-based algorithms. 
Another important issue in the use of multifunctional 
myoelectric prosthesis is the effect of unintentional classes of 
movements on the control performance. In the real-time use of 
EMG-PR-based prostheses, it would be impossible for the 
users to avoid doing any movement that is not included within 
the training motion classes of a classifier. As an example, 
suppose that an EMG-PR classifier is trained with EMG 
recordings for the classification of two classes of movements 
such as hand opening and closing. For the trained classifier, 
the hand opening and closing would be the target movements 
(TMs) and all other movements would be non-target 
movements (NTMs). In the practical application of the trained 
classifier, it is inevitable for users to unintentionally perform 
these NTMs that would cause the limb residual muscle 
contraction to generate EMG signals. The EMG signals from 
NTMs will be captured by the surface electrodes and fed into 
the trained classifier for movement identification in real-time 
control of a multifunctional myoelectric prosthesis. The 
classifier would classify the NTMs to either hand opening or 
hand closing. Obviously, these NTMs would decay the 
performance of a trained classifier in real-time use. Daisuke 
proposed a supervising mechanism for learning data set for 
adaptation to the individual variation of EMG signal[13]. 
However, it is still unknown how these untrained movements 
would affect the performance of a trained classifier in the 
control of multifunctional prostheses. 

In the current study, the effect of NTMs on the 
classification performance of a movement classifier was 
investigated by EMG recordings from two able-bodied 
subjects. The classifier was built based on a linear 
discriminant analysis (LDA) and was trained with 
high-density EMG signals from the forearm muscles when the 
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subjects were doing five classes of TMs. The effects of  
classes of NTMs were evaluated by feeding the EMG signals 
from the four NTMs to the trained classifier. And a training 
strategy was proposed to reduce the effect by including the 
NTMs in the training set with label of “no movement”. This 
study would provide the useful guides to improve the 
classification performance of a movement classifier toward its 
practical applications in control of a multifunctional 
myoelectric prosthesis 

II. METHODS 

A. Subjects 

In this pilot study, two able-bodied subjects (one male and 
one female with ages of 27 and 25 years, respectively) were 
recruited. The experimental protocols were approved by the 
Shenzhen Institutes of Advanced Technology, Chinese 
Academy of Science. And all subjects provided permission 
for publication of photographs for scientific and educational 
purposes. 

B. Experiment and Data Acquisition 

For each subject, 64 channels of EMG data were recorded 
with a high-density EMG system (REFA 128, TMS 
international, the Netherlands). The electrodes were evenly 
placed in an eight by eight grid over the whole forearm area, as 
showed in Figure. 1. The center-to-center distance between 
every two adjacent electrodes was about 1.5 cm.  

 

Figure 1.  Placement of electrodes for high-density EMG data colleciton. 

Five TM classes and  four NTM classes were considered 
in this study. The TM classes included two hand motions: 
hand open (HO) and hand close (HC) as well as two wrist 
motions: wrist pronation (WP) and wrist supination (WS), 
plus no movement (NM). The NTM classes consisted of two 
hand grasps, point grip (PG) and hook grip (HG), and two 
wrist movements, wrist extension (WE) and wrist flexion 
(WF). For each subject, the experiment involved two 
successive sessions. In each session, the subjects held each of 
the TM and NTM classes for 5 seconds and repeated 10 times, 
which were guided by a prepared video. There was a 4-second 
break between two consecutive movement contractions and 
was an about 3-min rest between the two sessions. Prior to the 
experiment, each subject had a 10-min practice to get familiar 
with the motion classes and the experimental procedure. All 
channels of EMG signals were passed through a band-pass 
filter (cut-off frequency from 10 to 500 Hz) and then sampled 
at a rate of 1024Hz. 

C. Data analysis and reduction of the NTM impact 

EMG signal recordings were analyzed offline with Matlab 
(The Mathwork Inc). A 50 Hz notch filter was used to further 

attenuate the power-line noises. The EMG recordings from 
the two sessions were concatenated producing a 100-second  
data set for each class of movements and then the data set were 
segmented into a series of 150-ms analysis windows with a 50 
ms overlap. For each analysis window, four time-domain 
features, mean absolute value, waveform length, zero 
crossings, and number of slope sign changes, that are widely 
accepted as an effective representation for EMG classification 
by many previous researchers [1, 3-5, 7-9] were extracted. 
The extracted features were then used as the input of a linear 
discriminant analysis (LDA) classifier that was proved to have 
excellent performance in various motion classifications [1, 3, 
4, 8, 9]. 

For each subject, the EMG features from the TM classes 
were used to train the LDA classifier. And then EMG features 
from the NTM classes were fed to the trained classifier which 
would label them as the nearest one of TM classes. In order to 
evaluate the effects of NTM classes on the classification of 
TM classes, we proposed a measure index called impact ratio 
which was the percentage of NTM samples identified as TMs.  
For the ith NTM class,  its impact ratio was defined as: 
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Where 
ij

I is impact ratio of the ith NTM class to the jth 

TM class; Ni is the total number of movements of ith NTM 
class; nij is the movement number of counted a NTM class into 
a TM class. 

A straightforward strategy to reduce the effects of the 
NTM was to make the prostheses keep static when NTM 
occurred, preventing undesired movements. Therefore, a 
method that included NTM in the training set of the classifier 
with label “no movement” was proposed in this study. Thus, 
for each subject, the original nine motion classes (five TM and 
four NTM) were combined into five classes (HO, HC, WP, 
WS, and Combined NM) . The performance of the newly 
trained classifier was measured by the index of classification 
accuracy, which is defined as: 
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Where Ai is the classification accuracy of ith motion class,  
ni is the number of correctly classified ith samples, and  Ni is 
the total number of ith class motion. 

III. RESULT 

A.  Effect of non-target movements 

In the first phase of the experiment, the LDA classifier was 
trained by the TM classes and then the NTM classes were fed 
to the trained classifier to be categorized to the nearest TM 
class. From TABLE I, it can be seen that the five TMs were 
well identified by the trained classifier with classification 
accuracies all above 99%. The impact ratio of each NTM class 
was calculated and was shown in Figure 2. The most 
significant findings were that none of the NTM classes were 
classified as the no movement class. It was observed that the 
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PG class was mostly classified into the HO target class. The 
percentage was 96.2% for female and 99.9% for male. There 
were differences between male and female for the 
classifications of the HG, WE and WF classes.  

TABLE I.  CONFUSION MATRIX FOR THE FIVE TARGET MOTIONS 

 HO HC WP WS NM 

HO 100  0 0 0 
HC 0. 15 99.7 0.15 0 0 
WP 0  100 0 0 
WS 0 0 0 100 0 
NM 0 0 0 0 100 

 

 

 

Figure 2.  Impact ratio of non-target movements. The colums represent the 

four classes of non-target movements, and the rows represent the five target 

movements. The color bar indicate the percent of impact ratio 

To examine the interactions of different motion types for 
the classification, the TMs and NTMs were grouped into hand 
motions (TM-HM and NTM-HM) and wrist motions 
(TM-WM and NTM-WM). The effects of different non-target 
motion types were shown in Figure. 3. It was observed from 
Figure. 3 that for both of the female and male subjects, the 
NTM-HM had greater probabilities to be identified as 
TM-HM, but the NTM-WM were more likely to be classified 
as the type of HM in target motions. This phenomenon was 
more evident for the female in Figure. 3, with 68.47% of the 
non-target hand motions classified as target hand motions and 
80.78% of the NTM-WM categorized into target hand 
motions.  

 

 

Figure 3.  Interaction effects of motion types between target and non-target 

motions. 

B. Solution to reduce the effect of NTMs 

To reduce the impacts of the NTMs on the control of the 
prosthesis, a practical strategy was to include some data of all 
undesired non-target motions in the training data with the 
label of no movement to avoid unwanted prosthesis 
movements. Five-fold cross validation was used to train and 
test the classifier, and the results were shown in Figure. 4. It 
was observed from Figure. 4 that the classification accuracies 
of the target motions (HO, HC, WP and WS) were above 99% 
for both of the subjects. Meanwhile, about 99.8% of the 
testing NTM samples were correctly classified to the new 
label (no movement) for the female (Figure 4(a)), and it was 
around 99.4% for the male (Figure 4(b)). The averaged 

accuracy (listed in TABLEⅡ) of all the motions for the two 

subjects was both above 99%. 
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Figure 4.  Confusion matrix after the NTMs were included in the training 

with label of  “no movement”. 

TABLE II.  CLASSIFICATION ACCURACY MATRIX OF THE CORRECTED 

MOTIONS 

Subject HO HC WP WS NM Average  

Female 99.9% 99.7% 100% 100% 99.8% 99.88% 

Male 99.9% 100% 100% 99.7% 99.4% 99.8% 

IV. DISCUSSION 

In this pilot study, we investigated the effect of  NTMs on 
TMs. The preliminary results showed all of the NTM were 
classified as TMs rather than the no movement class (Fig.3), 
which suggested that the undesired motions made by the 
subjects would have a big impact on the target motions and 
therefore should be taken appropriate care of. Among all 
NTM, it is observed that the movement of PG was nearly 
completely classified to the HO class, suggesting that the 
temporal features of HO were most similar to the PG motion, 
at least for LDA classifier. However, for other motions such as 
the HG, there is no such unique target motion that matches it 
best. Instead, it can be classified to multiple target classes by 
different portions.  

A direct and effective method to reduce the effects of the 
NTM is to categorize all the unexpected motions to no 
movement to prevent the prosthesis control system from 
producing unwanted movements. Even though huge 
differences may exist in the temporal features between NTM 
and no movements, the results of this study showed that the 
LDA classifier could correctly identify various NTMs as the 
new label after it is trained by including the NTM samples in 
the class of no movement, with a classification accuracy of 
above 91% for able-bodied subjects. It is similar to the 
strategy proposed by Aaron et al who included a few of novel 
subject’s level walking in the training data to create a 
user-independent classifier, increasing the recognition rate 
from 48% to 86%[14].This may be explained by the 
generalization ability of the LDA classifier found in many 
similar studies[6, 15].  

Note that only two able-bodied subjects were recruited for 
the experiment in the study. It would be investigated in future 
studies whether the similar results could be observed in more 
able-bodied subjects and amputees. In additional, more 
effective solutions will be employed. And in terms of clinical 
use, a lower dimension of EMG signals would be used in 
further work. 
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